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This is the final report of the program "Computer Solutions of the Vlasov

Equations", performed for the National Aeronautics and Space Administration

under Contract NAS 8-5214. The work was executed by a combined effort of the

Applied Research and Aerodynamics Operation, Flight Propulsion Division, and

the Space Power and Propulsion Section, Missile and Space Division of the

General Electric Company. The period of performance was from 1 June, 1963

to 30 November, 1964. The NASA Program Manager was Dr. Robert N. Seitz,

George C. Marshall Space Flight Center, Huntsville, Alabama.

Computer programs were written to determine solutions of the Vlasov

equations for plane, cylindrical and spherical geometries. Potential

distributions and charge density distributions were found for each of these

configurations under a range of conditions. Values of the independent para-

meters of bias potential, electrode spacing (in Debye lengths ), and charge

density ratio, were chosen so as to yield a wide variety of types of

solutions. The fundamental physical characteristics of each of these systems

were established. __

The participants in this program were Dr. D. C. Prince, Jr., and N. P.

Jeffries as the Principal Investigators, with A. Wikoff and L. Cumbers as

Engineering Assistants.
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I. Introduction and Physical Picture

Two related physical problems provide the inspiration for studying

solutions of the collisionless Boltzmann or Vlasov equations (_ . In the

_ A

first problem (FigS-l), designated the "diode problem", the objective is

to predict current-voltage characteristics between two electrodes, an

emitter and a collecto_in the presence of a plasma. Primary attention is

given to an emitter on which charged particles are formed. The particles

may have either positive or negative charges. In principle, the e_ectron

current, leaving the emitter, of positively charged particles and negatively

charged particles may be varied quite independently. For example, if thc

emitter is a hot oxide-coated surface in the presence of a metallic cesium

vapor, the electron emission might vary with temperature according to the

Richardson-Dushman relation, (Ref. 2 ) while the ion current (assuming that

all neutral atoms striking the hot surface are ionized) would be a simple

function of the vapor pressure. Facing the emitter there is a collector

at some electrostatic bias potential relative to the emitter. The bias

potential might be applied externally or it might be a result of the Fermi

effect. The motion of the charged particles after leaving the emitter is

determined by the electrostatic field distribution, which in turn is

the result of both the distribution of space charge in the field and the

applied bias potential. It is assumed that any charged particle reaching

the collector, or touching the emitter upon returning, disappears, either

into the external circuit or by losing its charge and forming a neutral atom.

-i-



!

_llector/ ,
Emitter I

I

!

I

Figure I-i: The Plasma Diode Configuration
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It is further assumed that the emitted particles, both ions and electrons,

possess velocity distributions satisfying a half-Maxwell-Boltzmann relation,

while the complete velocity distribution at any point in the configuration

is the Maxwell-Boltzmmnn relation modified by appropriate momentum and energy

relations.

Diode configurations which are considered in this study either have an

electrode spacing which is small compared to the radius of curvature (including

the plane case), or are concentric cylindrical or spherical situations with

the collector external to the emitter.

The second problem is designated as the "probe problem" (Fig. 11-2). _he

intent here is to predict the disturbance caused by a small object at some

enforced bias potential relative to a plasma inside a much larger (or near

infinite) container. The disturbance involves, in general, both a local

departure from an essentially neutral plasma and a charged particle current

of one sign or the other from the plasma to the probe. Cylindrical or spherical

symmetry is implied by the definition of the problem. The distinguishing

feature of the probe problem as compared with the diode problem is that most

particles of either sign leave the emitter with a velocity component per-

pendicular to the radius, which, under the action of constancy of angular

momentum, prevents them from negotiating the bias potential barrier to the

collector or probe. Instead, these particles follow trajectories which

become entirely tangential at some radius and finally return to the emitter.

The net charged particle current of either sign is a small fraction of the

emitted current. A special case of the cylindrical plasma diode, the

-3-
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cylindrical monode or plasma inside a cylindrical container, was treated at

some length in Re_, 3.

At the start of investigation under this contract, it was expected that

the effort would be placed on cylindrical and spherical geometries, rather

than on the plane geometry. Fairly early in the program, however, it became

apparent that peculiarities in the behavior of cylindrical geometry solutions

(primarily instability of a near-neutral charge density distribution) were

present. It seemed likely that study of the plane situation would provide

considerable insight into the nature of the problems of the curved geometries_

After this work was well along, several references to other studies on planar

plasma diodes were identified (Refs. 4, 5, & 6 ). The systematic analysis

and presentation of this investigation does seem to be a contribution to under-

standing the behavior of planar plasma diodes.

-5-



A. Philosophy and General Discussion of Analysis Methods

The potential distribution in a plasma diode satisfies Poisson's Equation,

including a complex space charge density. This charge density at any point is

supposed to be the result of an initial formation of charged particles with

a thermal distribution of particle velocities, and a subsequent history of the

particle motion consistent with appropriate laws of motion. Altogether, five

successive mathematical integration operations must be performed in the process

of arriving at the solution. Summation of particles, identified by their

velocity components in three mutually perpendicular coordinate directions, to

get the charge densit_ accounts for three of the five integrations._'lhe

remaining two integrations appear in the solution of the second order ordinary

differential equation (made ordinary by symmetry assumptions).

Depending on the particular facet of the generalproblem, one or more of

the five integrations may be carried out analytically and disposed of. One

or two more of the integrations may require numerical evaluation, but do

allow such numerical evaluation to be carried out explicitly, once and for all.

Most of the time, however, at least one of the integrations must be carried

out by some trial-and-error or iteration scheme. Most of the effort under

this contract has been concerned with the development of workable iteration

schemes for those cases where means for explicit integration have not been

found.

-6-
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In the case of the planar diode, the summations of charged particles

over two out of the three perpendicular velocity components reduce to

evaluation of probability integrals from zero to infinity, and consequently

lead to a particularly simple form. The summation in the third direction

can always be expressed in terms of the error function (which, however, may

require numerical evaluation). Be complete analytical expression for the

second derivative of the potential involves two Kronecker deltas and plus-

or-minus options. The plus or minus, or the zero or one, depends on whether

the particular point lies on the emitter or the collector side of a potential

extrem',_n controlling transmission or reflection of the one or the other

charge particle species. In the planar case the second order differenti_l

equation can always be expressed in exact differential form and integrated

once analytically, subject to an undetermined constant of integration. At

this point, the variables are always separable, and a formula is set up for

use in explicit numerical evaluation of the final integral which, however,

retains the constant of integration of the earlier integration as a parameter.

The initial boundary condition can be satisfied automatically by definition of

the reference potential at the emitter, zero distance. With the bias potential

as the upper limit of integration of a definite integral (the emitter at

reference potential is the lower limit), the parameter is varied until the

final boundary condition is satisfied.

-7-



Classes of Solution

Solutions of the planar diode problem turned out to fall into three

main classes: monotonic potential solutions, solutions with at least one

extremum in the direction of the bias potential, and solutions with an

extremum in the opposite direction from the bias potential.

Each of these classes may be further subdivided, depending on whether

the number of Debye lengths in the electrode spacing is large or small, on

the number of inflection points in the potential distribution (which may

depend on both the number of Debye lengths and on the emitted electron-ion

density ratio), and on the electron-ion density ratio.

The most convenient choice of iteration parameter for the monotonic

case proved to be the slope of the potential distribution curve at the

inflection point closest to the collector. A second inflection point may

be present if the charge density near the emitter due to attracted particles

is greater than the total charge density, including reflected particles, of

the species repelled by the bias potential, but this excess of particles

is not great enough to produce a potential extremum opposite to the bias

potential. This second inflection point does not affect the computation.

The main subdivision of monotonic cases occurs between situations where

changes in the slope of the potential distribution curve at the inflection

point do or do not produce changes in the slope at the emitter and the collector

(i.e., slope changes which can be detected by the eight significant figure

-8-
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accuracy of the computer used for evaluation). The situation when the slope

at the inflection point does not significantly influence the slopes at emitter

and collector, is referred to as the plateau situation. An additional case

requiring special consideration occurs when the slope at the emitter is

positive and less than the slope at the inflection point.

The plateau situation may also arise where there isa potential

extremumin the opposite direction from the bias potential. In this case the

convenient iteration parameter is the value of the potential at the extremum.

The value of the potential at the extremum is also the convenient iteration

parameter for the case of an extremum in the same direction as the bias

potential. In this situation, however, the plateau does not appear but is

replaced by a tendency toward oscillatory solutions. This distinction between

electrode spacings which are a small number of Debye lengths and those which are

a large number of Debye lengths is made when the oscillation first appears.

Altogether, it appeared that there were about ten different sltuations which

had to be distinguished and given special numerical handling to give complete

coverage to the planar plasma diode problem.

Many of the contingencies investigated in detail in the planar problem

have also been found in the cylindrical and spherical problems, but with

modifications introduced by the curved geometry. It has not yet been

possible to demonstrate ability to find cylindrical or spherical solutions

comparable to all the planar solutions. The simplest situation for which a

generally satisfactory solution seems to have been found is the situation

-9-
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where the proportions of charged particles passing from the emitter to the

collector and returning to the emitter are determined entirely by the collector

bias potential. In contrast to the planar case, the charge density of any

point may be determined not only by the value of the potential there, but also

by the location relative to the emitter. This is a consequenae of the influence

of the momentum effect in the curved geometry on the limits of admissible

velocities. We have found solutions to curved geometry problems with both

internal and external collectors, analogous to the planar situation where

the slope at the inflection point does make a difference to the slopes at

emitter and collector, provided the electrode spacing is a fairly small

number of Debye lengths. Under conditions where the planar solution approaches

a slope small enough not to influence the slope at emitter and collector, the

curved geometry solutions begin to show oscillations. These oscillations

complicate the problems of arriving at solutions considerably. As the number

of Debye lengths and the electrode spacing increases some more, it is found

that the collector bias potential is no longer the only criterion determining

the charge density. Any time there is a potential extremum in the opposite

direction from the bias potential, this extremum will serve as a barrier

to some particles which could otherwise make the transit to the collector.

The extremum itself is the barrier for particles with zero tangential

velocity. Particles with some tangential velocity will be repelled before

reaching the extremum in external collector situations, by radii beyond the

extremum for internal collector situations. In external collector situations

where the electrode spacing is a fairly large number of Debye lengths, the

repelling slope close to the emitter may easily be large enough to repel

-lO-
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some particles which would otherwise convert enough kinetic energy of

tangential velocity to radial velocity, through the angular momentum effect,

to make the transit to the collector. In internal collector situations where

there is an effective sheath close to the collector, the potentials close

to the edge of the sheath away from the collector may control the reflection

of some particles.

In cylindrical diodes, integration of velocity components parallel to

the axis of symmetry results in the complete probability integral. A second

integration of the three associated with charge density calculation becomes

possible if a transformation is made so as to express the integral in terms

of the resultant velocity and the angle made by the trajectory with the

tangential direction. The third integration for charge density has always

required numerical evaluation.

No practical procedure has been found for performing either of the

two integrations in the differential equation analytically. Some success has

been found with two techniques: (1) double numerical integration from an assumed

initial slope using charge densities evaluated from past history and a future

history introduced by a small number of assumed input points; and (2) assuming

a complete potential distribution, calculating a charge density distribution

using this assumed potential distribution for both past and future history at

all points and then using Simpson'srule integration twice together with

appropriate constants of integration to obtain a new potential distribution.

The numerical integration of the assumed initial slope is quite effective for

-ll-
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those cases where a single future history point is sufficient to define all

charge densities, and almost as effective when the influence of some other

repelling potential besides the collector is only a minor modification to the

major influence of the collector potential. The use of the entire assumed

potential distribution and Simpson's rule integration has been effective for

monotonic solutions and for solutions in which the net charge density never

changes sign. This method has been found to be unsatisfactory for obtaining

solutions in which there is a tendency toward oscillation. It is not clear

at this time that any of the solutions obtained by this technique could not

have been obtained more easily with the technique of numerical integration

from the assumed initial slope.

Two of the three integrations of the calculation of charge density in

the spherical case may also be carried out analytically. The first one is

carried out by observing that complete polar symmetry exists for velocity

components in a plane perpendicular to the radius of the sphere. Thus, the

problem may be reduced to integration over velocity components along the

radius of the sphere and perpendicular to that radius. The second integration

may be made analytically by expressing the integral over the radial velocity

components in terms of appropriate error functions. The third integration,

over the range of negative expotentials of the square of this velocity

component, must be made numerically. All spherical results have been obtained

using the first described procedure for the cylindrical problem.

-12 -

I

I

I
I
I
I

I

I
I
I

I
I

I

I
I

I

I
I



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

II THE PLANAR PLASMA DIODE PROBLEM

A. Introduction

The planar plasma diode was originally investigated under this contract

because of difficulties encountered in trying to solve for the cylindrical

diode configuration. The difficulties involved the establishing of possible

conditions for neutrality or near-neutrallty in the neighborhood of a

potential disturbance. It was assumed that an understanding of the planar

diode would be helpful in obtaining solutions for the cylindrical and spherical

configurations.

It was found that the planar diode was a quite interesting problem in

itself and several aspects of its behavior were later observed also in the

cylindrical and spherical diode solutions. Some direct comparisons will be

made between these configurations which demonstrate the effects of the diode

geometry.

This chapter will outline the method of solution used for the planar

diode problems, and then the various types of solutions which have been found

will be discussed. Some comparisons will be made between the planar solutions

and cylindrical solutions in order to demonstrate the effects of different

geometries.

-13-



B. Basic Equations

The basic problem is to find the potential and charge density distri-

butions in a diode with flat electrodes. If we omit consideration of the

edge effects (or assume infinite electrodes ), then the problem becomes one-

dimensional. The potential in an electrostatic field is known to obey Poisson's

equation, which can be written as follows, for the MKS system of units:

where

6_

= potential, volts

jO = charge density, coulombs/m S

_o = dielectric constant of the medium, farad/m

Here the medium is taken as a vacuum, so 6o is unity. The net charge

density is the difference between the densities of ions and electrons,

where e = charge on a particle, coulombs

_= number density of ions, i/cm S

_t= number density of electrons, I/cm 3

(ii-2)

Substituting and introducing the subscript o denoting conditions at the emitter

electrode, we have

-14-
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i
> (II-3)

_he Debye length represents the maximum distance over which a given

charge can exert an influence on other particles. It is a parameter that

can be used to non-dimensionallze the equation. It is given by:

where k = Boltzmann's constant, 1.38 x i0 -23 joule/°K

T = Temperature of particles, OK

I
I
I

This distance parameter can be normalized by dividing by the electrode spacing

L, and the potential can be expressed inelectron-volts by using the parameter

e_
= _ . Substituting these quantities into equation (II-3), we obtain a

convenient form for the potential variation,

I

I

I

where _7 2- _ and the Debye length is here based on total ion density at

the emitter (although emitted ion density is probably preferable because it is

an independent variable).

I

I

I

It has been shown in Reference 1 that the velocity distribution of the

particles at the emitter may be taken as a half-Maxwellian, that is the

velocities have the Maxwellian distribution but all are directed away from the

emitter. Therefore, the probability function of the velocities is given by:

-15-



where ?_x_ _-_ _ ?f_ are velocities in each direction and K is a

normalizing constant. The number density of particles is then the integral

of all possible velocity vectors for a cube of the phase space

(IX-7)

When the problem involves only two dimensions, such as when there is no variation

with z, the integration may be carried out immediately:

I
I

I

or this can be normalized with the emitter charge density

(ii-8)

yy c _ '_" _" (xl-9)

For the planar diode, the variation is in the x-direction only I

_ C C
," _ (iV-lO)

If we consider a monotonic distribution of potential, then the limits of i

integration can be determined. In some cases, the potential distribution will

not be monotonic but rather it may have a potential peak or valley between the

emitter and collector. These cases will be dealt with later in this chapter.

-16-
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It should be mentioned that we are being sufficiently general when we consider

only bias potentials which are attractive to electrons, because the solutions

for bias potentials attractive to ions will simply be mirror images of the

solutions we obtain here.

Under the conditions of such a monotonic potential variation attractive

to electrons, all the electrons are formed at the emitter and make the transit

to the collector. _his means that all the electrons found at a point in the

electr_le spacing which has a potential _ have been accelerated through that

potential. Therefore, their velocity is at least as large as the kinetic

energy appropriate for that potential acceleration, and the lower limit of

velocities is thus given by:

-' _v__ = aW (IZ-n)

or

V,_.T"

The upper limit on these velocities is infinity.

equation (II-I0) to be written as:

(If-12)

These conditions allow

_o

(II-13)

-17-



For the ions, particles are traveling in both directions because manyof them

are decelerated and turned around by the opposing potential gradient. The

particles traveling in the positive direction mayhave all energies, but the

minimuminitial energy is that which is removed by deceleration through the

potential difference. The lower limit for returning particles is also zero,

but there is an upper limit above which the particles had enough energy to

I
I
I

I
negotiate the bias potential difference. Therefore the expression becomes: I

-- (if-14) I

"° s2, "- "_'-'-':zd(m°_ I
which integrates to become

ar /4- _ - aN7zl (11-15)C

_"° I + _ _/_r

Now we introduce the symbols

0< -- -----

and equation (5) becomes

d---_ L e _q :IJ-_

I
I

I
I

I
I
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The electron current density leaving the emitter may be determined from the

charge density there multiplied by the average particle velocity away from

the emitter. This average velocity may be found by integrating the particle

velocity component in the positive direction times the probability function

over the full range of admissible velocity vectors,

or since

(II-17)

_ Eo A T (i -lS)

the electron current can be written as

(If-19)

I
This current density was evaluated at the emitter but it could have been

evaluated a_ any other point, with the same result. Thus, j is constant with

(or x ) as it should be.

I ,

The net ion current is conveniently integrated at the emitter. In

contrast with the situation for electrons, the limits of integration depend

on the bias potential. Using the appropriate limits of integration, we can

find the emitter electron current density.

-19-
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I

I
The equation for the potential distribution, equation (11-16), can

be simplified by integrating it once. This is done by first multiplying bye'.

Then we have;

I

I

Then

I

I

I

I

and

I

I

_ _ _-_ .,
I

I
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I

I

I

Thus, we have

The variables can then be separated

This equation can then be integrated numerically on a computer. The constant

C is determined so as to give the value unity when the right-hand side is

integrated from_ = 0 to _ = _ .
e

I For large values of _, the evaluation of the first term on the right-

hand side of Equation II-16 is facilitated by using an expansion,

!
/ /

+ /,3_ 1,5,5- ...7 (ir-24)
..A

I The preceding equations are the basic forms which are used to find

I
solutions for the planar plasma diodes. These equations are modified for the

cases of a potential maximum or potential minimum between the electrodes,

I and these cases will be accounted for by altering the limits of integration

on the expression for charge densities.

I "21 "
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C. Types of Solutions

The potential distributions in a planar plasma diode can be generally

classified into the following types:

1. Monotonic Solutions

2. Potential Minimum Solutions

3. Potential Maximum Solutions

4. Potential Oscillations with Amplitude Greater Than the Bias Potential

The first three of these classes have been investigated extensively under this

Contract; the fourth type has been proven to exist but no exact solutions were

obtained.

The particular type of solutions obtained for a planar diode depends on

the physical parameters involved, especially the ratio of electron density to

ion density at the emitter. This parameter is denoted as _ and it has been varied

from 0.05 to 5.0 in these investigations. The bias potential has been chosen as

2 kT/e and an electrode spacing of nine Debye lengths is used here. For a value

of _ between about 0.2 and 1.25 a monotonic variation of potential is found. For

greater than 1.25, a minimum in the potential is found near the emitter. For

less than 0.2 a maximum in the potential is observed, and oscillations in the

potential occur between the potential maximum and the collector. As _ is decreased

below 0.2, the amplitude of the oscillations grows until, at some value of

somewhat less than O.1, the amplitude of the oscillations becomes larger than the

bias potential. Under these conditions, there exists at least one potential

_22_
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C. Types of Solutions

The potential distributions in a planar plasma diode can be generally

classified into the following types:

i. Monotonic Solutions

2. Potential Minimum Solutions

3. Potential Maximum Solutions

4. Potential Oscillations with Amplitude Greater Than the Bias Potential

The first three of these classes have been investigated extensively under this

Contract; the fourth type has been proven to exist but no exact solutions were

obtained.

The particular type of solutions obtained for a planar diode depends on

the physical parameters involved, especially the ratio of electron density to

ion density at the emitter. This parameter is denoted as _ and it has been varied

from 0.05 to 5.0 in these investigations. The bias potential has been chosen as

2 kT/e and an electrode spacing of nine Debye lengths is used here. For a value

of _ between about 0.2 and 1.25 a monotonic variation of potential is found. For

greater than 1.25, a minimum in the potential is found near the emitter. For

less than 0.2 a maximum in the potential is observed, and oscillations in the

potential occur between the potential maximum and the collector. As _ is decreased

below 0.2, the amplitude of the oscillations grows until, at some value of

somewhat less than 0.1, the amplitude of the oscillations becomes larger than the

bias potential. Under these conditions, there exists at least one potential
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maximum and one potential minimum outside the range of the bias potential.

Each of these types of solutions will be discussed in this section, and

some examples of each will be given. The modifications in the basic equations

needed for the potential maximum and potential minimum cases will be explained.

i. Monotonic Solutions

Solutions have been obtained for a planar plasma diode configuration

under a wide range of parametric conditions. The electrode spacing has been

nondlmensionalized by dividing by the Debye length. Since the Debye length

is a function of ion density, dielectric constant, and temperature, this means

that the (L/_ D ) parameter actually combines a number of variables. Usually it

is considered as a function of electrode spacing or space charge density since

these are often the variables of interest.

The following ranges were investigated in this study (although not

simultaneously):

Bias potential =_: 2 to lO00 kT/e

Electrode spacing/Debye length = L/_ : 0 to 500

Emitter electron/Ion density =_ : 0.05 to 5.0

A computer program was written to find these solutions. It required

revision several times to account for unexpected phenomena. The listing for

this program is given in Appendix A of this report. The input quantities for

this program are listed in Tables I and II, where Table I shows the necessary

input to obtain a solution and Table II has additional input quantities which

-23-
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TABLE II-i

MINIMU]4 INPUT FOR PLANAR PLASMA DIODE PROGRAM

MONTH, three numbers of two digits each describing month, day, and

year, of the calculation.

DEBYE, the number of Debye lengths in the electrode spacing.

POT, the collector bias potential (only positive values may be used).

ETA, the ratio of emitted electron density to total ion density at
the emitter.

!

!

!

!

!

!
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I
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TABLE II-2

OPTIONAL INPUT FOR FLEXIBILITY IN SOLUTIONS OF PLAN/_R DIODE PRO_

O

4

4

3

3

3

3

0

LPRINT, should be input as 2 if a printout after each iteration
is desired.

KPRI3?, should be input as i if the output data are to be edited

to put on a single page. _is feature is not often used

because it would be likely to destroy the detailed pre-
sentation of data in potential minimum and/or plateau

regions.

DEBYY, an alternative to DEBYE if it is desired to use a Debye

length as the unit of length replacing the electrode

spacing. _is has occasionally proved to be useful in

cases where the electrode spacing is a large number of
Debye lengths (greater than 200).

PHIPRM, maybe input if desired as a starting point for the

iteration of monotonic type solutions. S3ais value

will be taken as the slope of the potential distri-

bution curve at the inflection point, where the net

charge density changes from ion rich to electron

rich going toward the collector, if there is such a

point. If there is no inflection point, this will

be the slope of the potential curve at the emitter.

If PHIPRM is not input, the initial value chosen will
be the straight line value for very low plasma density.

PHI, maybe input as a starting value for potential minimum

type solutions. Be value must be negative; its absolute

value should be less than the absolute magnitude of the
true minimumvalue.

XLOOP, may be input to give a maximumnumber of iterations diff-

erent from lS. Our experience here is that the solution

for any configuration will converge in fewer than 15 loops

if it converges at all.

,_5-



can be used to speed up the solution or obtain additional information.

The results of these computer runs have been graphed, usually in the

form of potential as a function of distance from the emitter and charge

density as a function of distance. In Figure II-la is shown the variation

of potential with distance for ratios of electrode spacing to Debye length

from 0 to lO0. The curves for 30 and lO0 become plateaus at a potential

of about 0.75 kT/e as will be shown on later curves. All the curves on _IT_

graph are calculated for a bias potential of 2 kT/e. In Figures II-lb, II-lc,

and II-ld, the bias potential has been increased to 5, lO, and 20 kT/e respect-

ively, but the shape of the potential curve has not been greatly altered. A

closer look at the variation of potential in the regions near the emitter and

collector may be obtained from Figures II-2a, 2b, 2c, and 2d. The characteristic

nature of the potential distribution in the sheath for distance measured in Debye

lengths _s" apparent_ . However, the coincidence of L/_ = 30 and L/A_ = i00 for

= 20 k__T may be questionable. The effect of bias potential as an independent
c e

parameter may be seen in Figures II-3a, 3b, 3c, and 3d. Then in Figures II-;_a,

_b, and _c, the variation of densities of ions and electrons are shown as a

function of distance from the emitter. These charge density distributions

correspond to the same parametric variations as applied to the preceding potential

distribution curves. Note that all these solutions begin with a neutral plasma

at the emitter.

Some interesting observations may be made from a study of these curves.

It is apparent that the influence of small disturbances on a neutral plasma is

to reduce the charge density faster by acceleration than by retardation, when

starting from a reference potential condition where all velocities are present.
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Therefore, an ion-rich condition appears in the region of the emitter. Farther

away from the emitter, the electron density decrease slows down enough that the

decrease in ion density catches up and a point of neutral plasma density is

attained. For a sufficiently large electrode spacing (or ion density), the
~

potential will enter a plateau region at that _point. The minimum value of

(L/_) needed for establishing such a region has been found to be about 20.

The value of the plateau potential is independent of the plasma density level

and it is independent of bias potential for bias potentials larger than

approximately 2 kT/e. On the downstream side of the plateau region (or the

neutral plasma point if no plateau exists) the charge density of ions continues

to be reduced quite rapidly and reaches a level at the collector which depends

on the bias potential. For bias potentials of about 7 or greater, the ion

density will be practicallyzero at the collector. Meanwhile, the electron

density decreases relatively slowly downstream of the neutral plasma until

it reaches some finite value at the collector. Meanwhile, the electron density

decreases relatively slowly downstream of the neutral plasma until it reaches

some finite value at the collector. The extent of this collector sheath

region depends on the collector potential, although the region of non-neutrality

near the emitter appears usually to extend about lO Debye lengths into the

electrode spacing.

A. The Characteristic Potential Distribution

Some of the results from these graphs may be generalized and this has been

done in Figure II-5. The solid curve represents data for electrode spacings

of 30 to lO0 Debye lengths and collector bias potentials of 2, 5, lO, and 20

kT/e, within the ability to plot on the scale. Therefore, it may be concluded

that this potential distribution is generally characteristic of the phenomenon.
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Also shown on this graph for a comparison is a sample curve along which the I

potential varies as the 4/3 power of distance, as would be required by the i

Langmuir-Child law for space charge limited flow. That these two curves do

not coincide is expected, because the infinite charge density of space charge I

limited flow is not necessarily associated with the extraction of a charged
m

particle current from a neutral plasma. However, the computed variation of

potential does begin to approximate a _/3 power variation as the bias potential B
w

is increased to very large values. This is shown in Figure 11-6, which gives

the potential distributions for bias potentials of 200 and i000 kT/e over an I

electrode spacing of 500 Debye lengths. The potential gradient in the

plateau was assumed at values from 10 -8 to i0 "5 kT/e per Debye length. Some I

program adaptlon was necessary to obtain these results and these were incorporated

as optional features of the program.

The results showed that the potential distribution above the plateau is

truly characteristic within the accuracy of the calculations. The electron

current passed by the plasma depends on the electron temperature and the

number density, according to equation (II-19) and is independent of the

collector potential. This equation is similar in form to the electron current

of the Lan@nuir-Child analysis (see equations 2-11 and 2-24 of the NAS 8-623

Contract Report) and leads to a relation between the Langmuir-Child electrode

spacing and the Debye length of the planar plasma diode analysis:
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This relation was used to match the Langmuir-Child potential curves for

200 and i000 kT/e bias potentials to the characteristic distribution of the

planar plasma diode analysis. It is interesting to observe that the influence

of the collector potential penetrates significantly farther (but not qualitatively

farther) into the plasma than would be predicted by considering a simple space

charge limited condition for particles of one species.

B. Effects of Charge Density Ratio

The ratio of electron density to ion density at the emitter may be

varied as an independent parameters. Some results from variation of this

parameter from 0.6 to 1.2 are shown in Figures II-7a, 7b, and 7c. In the cases

where the electron density at the emitter is less than the ion density, a

higher repelling potential is necessary before the ion density drops to a

level equal to the electron density, than for the case of unity _Q. Conversely,

for values of _ greater than 1.O, the neutral plasma potential is reduced from

its value for equal emitter charge densities. Other than these differences,

the potential behavior is rather similar for the variations of charge density

ratio within this range.

Some results of monotonic potential distributions were also obtained at

a value of (L/_) equal to 60. These are shown in Figures II-8 with charge

density variations given in Figure II-9. It can be observed, by comparison

of results for various electrode spacings, that the effect of increasing

(L/_ D) is simply to increase the relative extent of the plateau region.
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2. Potential Minimum Solutions

For certain conditions in a planar plasma diode the potential distribution

incurs a minimum which is below the potential at the emitter. This will occur

when there is a large excess of electrons near the emitter and a negative

potential is necessary to repel most of the excess. Therefore, such a

condition may be obtained by increasing the value of _ to somewhat greater than

unity.

A good example of this type of phenonenon is shown in Figures II-lO, ll,

and 12, with the accompanying charge density distributions shown in Figures

II-13, 14, and 15. As the value of _ is increased from 0.4 to 1.2, the

plateau potential is monotonically reduced. The_ in the result for _= 2.0,

a potential well is observed near the emitter. From the charge density curve

for this case it can be seen that the electron density drops rapidly near the

emitter due to deceleration. It continues to drop on the collector side of

the minimum but this is now caused by acceleration of the electrons. A

neutral plasma condition occurs but it is unstable and an ion rich region

with rising potential then occurs. Eventually, a neutral plasma plateau

level is reached when the ion density reduction from repulsion catches up to

the electron density reduction from acceleration. From here on, the potential

variation is similar to the monotonic potential distribution discussed previously.
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2 kT/e, E1ectrod_ Spacing = 30_D
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A. Equations for the Potential Minimum Solution

The development of the governing equations for a potential minimum

condition is similar to the development for the monotonic potential distri-

bution except for the limits on electron and ion densities. The revised

expressions will be derived here and Poisson's equation will be integrated

once.

In the case of a single potential minimum close to the emitter, some

electrons fail to negotiate the retarding potential and return to the emitter.

Returning electrons occupy the range from zero velocity to that velocity

acquired by acceleration from the minimum potential back to the local potential.

All velocities are possible for outward bound electrons.

Between the potential minimum and the collector there are no returning elec-

trons. The minimum velocity is that corresponding to acceleration away from

the minimum. The electron density at the emitter was evaluated in connection

with (Ii-26).

,,, .,..{ _'_]
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I

It may be observed that (11-26) and (II-27), taken with& approaching zero,

are consistant with the expression for electron density in monotonic distri-

butions (see equation II-13).

The ion density formulation must be altered also to account for the

potential minimum. In the region of positive potential toward the collector,

ions are present with all positive velocities. Admissible negative velocities

run from zero to the level corresponding to acceleration from zero velocity at

the collector.

Equations (II-26 to II-28) may be included in Poisson's equation so as

to relate the local charge density to the potential behavior.

}
where _ = 1 for negative _, 0 for positive _, and the positive sign in the +

(II-29)

applies between the emitter and the potential minimum, if any.
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Poisson's equation may be integrated once if both sides are multiplied

bye'.

Therefore

(II-32)

(II-33)

When (II-33) is used to obtain a monotonic solution, the procedure is to assume

a value of_' at a value of#which causes ff" to vanish; iterating on this

assumed_' to make the second integration gives values of x covering the range

0 to 1 as_ranges from 0 tO_c. The net charge density is always electron

rich near the collector. If the charge density is ion rich near the emitter,

there will be only one such value,#i , which gives a zero value of_". If,

however, the region close to the emitter is electron rich, there may be two

.61_



such values. The desired_i is the one closer to the collector potential.

For this case

_-_-_[,,-_t _: -e_]- b-_-<I-_,- _ '
"1-

(II-34)

Solutions with a potential minimum near the emitter are obtained by

assuming a value for the minimum potential and iterating on this assumption

to get the desired range of x. For this purpose_' vanishes at the minimum.

4-

The process of obtaining a second integral of Poisson's equation (or an

integral of II-33) usually must be carried through regions where_ is very

small, so that a large variation of x results from a small change in_. It is

therefore necessary for the program to have the ability to describe the slope

of the potential curve in the plateau region, particularly in the potential

minimum case, with sufficient accuracy to arrive at a definitive solution.

A means for doing this has been identified which should in principle produce

the desired results without resorting to double-precision calculations.

The principle of this analysis depends on recognition of the fact that

the constant C, defined by equation II-34 is not affected by the slope of

the plateau at the neutral plasma inflection point of the potential curve,

within the eight significant figure accuracy of single precision calculations,

if that slope is less than lO "4 kT/e per Debye length. For practical purposes,
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I

I

I
the ability to detect the influence of the inflection point slope on the rest

of the potential distribution ends when the slope drops below 10 -3 kT/e per

I Debye length. This result can be put to work.

I We also observe that

I
I

I
I
I

I
I

I

This, therefore, defines the first coefficient needed for a Taylor's series

expansion for _,)2 in terms of_. Subsequent coefficients are obtained by

differentiating again:

(zz-37)

(z1-38)
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(II-39)

(TT-40)
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I

I

I

I

The Taylor's Series expansion for# '2, making use of the above coefficients,

is valid in the neighborhood of the inflection point (but not in the neighbor-

hood of a potential minimum or maximum, where the charge density distribution

has singular derivatives ). Sufficiently close to the inflection point the

I

!
!

!

quadratic term of the Taylor's Series is sufficiently precise to define the

slope.

Then:

I Separating variables :

(II-42)

(II-_3)

(TT-4_,)
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If now a situation is identified in which the assumed slope at the inflection

point is too small to affect the constant of the monotonic solution, or in

which the difference between two large quantities (based on the difference in

potential between this inflection point and the minimum) from which the

inflection point slope is to be calculated disappears by comparison with those

quantities, the formulation in (II-44) may be used to define the slope of the

potential distribution in the plateau region. Integration is performed from

the emitter (in the monotonic case) or the potential minimum (if applicable)

towards the inflection point, and then backwards from the collector towards

the inflection point: in these regions the subsequent determination of the

plateau slope will not alter the potential distribution. At two potentials

differing from the inflection point potential by the same amount (chosen

arbitrarily at about l0 "6) a gap in the coordinates appears. This gap,

together with the potential difference, is inserted in (II-44) to

!

determine_i . Some adjustment in some values of_' for potentials close

to the inflection point potential may be required, which will in turn

affect the gap width to be bridged, but these adjustments should be small.
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B. Graphical Results for Potential Minimum Solutions

in Figure ii-16 is shown a family of curves representing potential

distributions for a planar diode with electrode spacing equal to nine Debye

lengths. It is seen that no plateau region is present which is to be ex-

pected for electrode spacings less than 20 Debye lengths. The emitter charge

density ratio has been raised in successive steps from 0.4 to 1.6. Between

1.2 and 1.4, the potential has become negative near the emitter and a potential

minimum has formed. The potential at the inflection point corresponds to the

plateau potential for larger ratios of electrode spacing to Debye length. This

potential has decreased monotonically down to the case for o( = 1.4; then the

curve for o(= 1.6 has a higher value of inflection point potential. It will be

shown later that the minimum-inflection point potential is found for an

emitter charge density ratio of about 1.33.

It should be mentioned that the potential curves in Figure 11-16 and the

corresponding electron and ion densities given in Figures 11-17, and Ii-18, have

been computed for a bias potential of 2 kT/e. This value of the bias potential

has been used for most of the planar diode computations because it is the low-

est bias potential which does not affect the value of the inflection point

potential.

Results for {L/_ ) = 200

It was of interest in this study to obtain results for the case of an

electrode spacing of 200 Debye-lengths. These are shown in Figures II-19 and

II-20. For_= 1.5, a very steep potential minimum condition is observed
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Figure II-16: Potential Variation Across a Planar Plasma Diode
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Figure II-18: Ion Density Variation in a Planar Diode
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iFigure 11-20
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because of the large value of (L/_ D ).

increased its relative extent.

Similarly the plateau region has

C. Investigations of the Emitter Potential Slope

_he slope of the potential at the emitter of a planar plasma diode exhibits

an unusual property near the point of zero slope. This problem was investigated

because of difficulties that arose when trying to find solutions that had a

very small slope of potential at the emitter. This problem was first encountered

in the cylindrical diode investigations and it was then also found to occur

in the planar diode calculations.

There are actually two difficulties that arise in this problem. One

is the fact that the potential slope at the emitter varies continuously but

not smoothly with the emitter charge density ratio. This may be seen from

Figure II-21, and also from Figure II-22 which is an enlarged plot of some of

the data on the previous graph. It can be observed that the potential slope

is everywhere continuous but there is a kink at the point of zero slope. This

behavior is actually not so unusual when it is understood that the expression

used to calculate the emitter potential slope for potential minimum cases is

different from the expression for monotonic cases. For a monotonic distri-

bution the emitterpotential slope is given by

/'- _ (II-45)
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where

+

from Equations II-BB and II-B4. On the other hand, for potential minimum

solutions the emitter potential slope is found from

(II=46)

where

Therefore, the variation of_ with o_should not be expected to be the

same for both types of distributions since different expressions are used to

calculate the emitter potential slope.

As a check on the continuity of the slope, the two expressions for the

slope should give the same value at the point of zero slope. This means that

equations (II=45) and (II=46) should both indicate a zero slope for 0(= 1.25.

Therefore,

,+,___-kJo_+ _,'_ .<l__ { ,

-76:-
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Substitution of appropriate values, _C = 2, &= O, & = .2719, _= .818

and _= 9, gives the result that both slopes are indeed calculated to bc

zero for _= 1.25. Therefore, the emitter slope is proven to be everywhere

continuous, but to have a different variation for potential minimum solutions

than for monotonic solutions.

Another problem was encounted during the investigation of the emitter

potential slope. At very small values of the emitter potential slope, the

I

!

I
I

computer program fails to function properly. The reason is that it expects

the slope at the emitter to be greater than the slope at the (second)

inflection point. For sufficiently large values of (L/z_) the latter value

is the plateau potential slope and this problem is not encountered. However,

for the case studied herein, the electrode spacing was only nine Debye lengths

and the inflection point slope was larger than the emitter slope for charge

density ratios between 1.22 and 1.25. In this case, the procedure found

effective was to determine the difference between the squares of the slopes

at the inflection point and at the emitter, (for which the computer run will

-77-



end with an error in square root). Then we re-input a value of PHIPRM which

is slightly greater than this value. Using this technique for several

successive computer runs will eventually provide a correct solution.

D. Other Effects

During the investigation of the emitter potential slope problem, some

other interesting effects were noticed. In Figure II-23 is shown the variation

of emitter potential slope with electrode spacing (or ion density) for a charge

density ratio of unity. The variation is linear for values of (L/_ o ) greater

than about lO and it approaches a finite value as (L/_) approaches zero.

The variation of plasma potential (or inflection point potential) has an

interesting behavior as a function of charge density ratio. This may be seen

in Figure II-24, which is a compilation of results for various values of

(L/_). The implications are that the plateau potential is not a function of

electrode spacing and that it is a double-valued function of charge density

ratio. It should also be noted that the charge density ratio for minimum

plasma potential is about 1.33, and this does not coincide with the point of

zero emitter slope, which is about 1.25.
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3. Potential Maximum Solutions

The preceding sections of this chapter have dealt with monotonic

solutions and potential minimum solutions. The potential minimum solutions

I

I

were obtained when the charge density ratio at the emitter was increased

above 1.25. For smaller values of _ the solutions were monotonic distri-

butions of potentials.

I
Another type of solution is obtained when the emitter charge density

I

I

I

ratio is decreased to a value of about 0.2 or less. Under these conditions

the diode is heavily ion-rich in the region of the emitter and a maximum is

attained in the potential. _hls requires revision in the computer program to

account for the presence of this potential hill.

equations previously developed for the potential minimum case.

_e formulation of the potential maximumproblem is similar to the

In this case,

I Poisson's equation has the form:

I t _ Jli_
(z_-47)

I
where the upper sign of a double sign applies to conditions between the

I

I
I

emitter and the maximum; the lower sign applies to conditions between the

maximum and the collector. The similarity of this equation to equation II-33

of the preceeding section with _ = O, should be evident. The ambiguous signs

follow directly from analysis of the limits of integration in equation II-14

of the monotonic analysis, the lower limit of admissible particle velocities on

I
-81-
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either side of the maximum being determined by acceleration of particles just

brought to rest at the maximum.

The terms in (11-47) which arise from the electron population can be

developed in a Taylor's Series in _-_M) without difficulty.

I
+I=_(,-=I_) '- '--- 7_,-_)t...

II
The terms in (II-47) which come from the ion population cannot be developed _

in a Taylor's Series in (_-_M), because derivatives beyond the first are unde-

fined. A substitution

,: <s=-sJ"

(II-49)

does however make a series development possible:

q

I_<-"t

,+_/ _

(II-5o)

I
I

I
I

I
I
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|
Combining (II-53) and (II-48) w

The net charge densitY2M at the maximum may be identified as I

With the use of (11-55) and (49), (54) can be written as

(II-55)

If the parameter values in (11-56) are such that the first three series

terms dominate the expansion for t', (56) may be integrated in closed form,

(Ref. 7 ).

y -+

Letting

3_

"('-_'_Y-_) _w___.÷ A
A

D

-8,4-

(11-57)

(11-58)
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0

6 FTzCA
There may be many cases when (11-56) with the negative sign yields a

zero value for t '2 when t is still small enough for the three terms to be

an excellent appropriation. In such cases, (II-59) gives a definite distance

from the potential maximum to a minimum. Since the negative sign for the

square root could equally well have been used in (II-57), (II-59) may be used

with a changed sign to give another distance from the minimum to a subsequent

maximum. Following additional steps, an oscillatory solution of this sort,

extending indefinitely, may be constructed.

a. Results of Potential Maximum Computations

Using the planar diode computer program, solutions were found for some

cases of potential maximum distributions. For the case of a 200 Debye length

spacing with a O.1 ratio of electron/ion density at the emitter, a total of

five manual iterations produced the correct computer solutions. This solution

is shown in Fig. II-25a along with two of the iterations that were obtained.

The iterations were made by varying the value of maximum potential between 2.0

and 2.07. A potential maximum of 2.048 gave the correct solution for this

case, which has an oscillation amplitude of 0.961 kT/e with a wavelength of

39.3 Debye lengths.
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b. Potential Distributions with Two or More Extrema

The monotonic distribution may be more generally classed as a potential

distribution with no extremain potential between the emitter and collector.

The potential minimum case is then a distribution with an extremum opposite

to the bias potential, and the potential maximum case has an extremumin the

same direction as the bias potential.

There is another case which has been considered as a possible distribution.

This is the existence of two (or more) extrema; it can occur when the amplitude

of the oscillations in a potential maximum condition exceeds the bias potential.

During this investigation, it was not considered within the scope of effort to

examine this type of solution in detail. In fact, the computer program would

require some revisions to be able to calculate the charge densities after passing

through each potential maximum and minimum. Furthermore, the oscillation is not

of constant amplitude so the computation must proceed throughout the electrode

space rather than just duplicate the first oscillation as was done in the

potential maximum solutions.

In spite of these obstacles, it has still been possible to obtain some

conclusions with the program in its present form. The graph of Figure II-25b

shows the results of several runs that were made for a bias potential of 2 kT/e

with an electron/ion charge density ratio at the emitter of 0.05. Upper and

lower bounds to the solution have been found, but the lower bound becomes

negative and the program is unable to complete the calculations. This indicates

that the correct solution will probably have amplitude larger than the bias

-87-
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potential and the solution becomes unavailable.

It should be observed that the amplitude of oscillation increases sharply

as the value of the potential at the maximum is decreased. For instance, the

amplitude is about 0.7 for a potential maximum of 3.0, and about 2.0 for a

potentlalmaxlmum of 2.5. Now the correct solution will have a potential max-

imumbetween 2.0 and 2.5 so its amplitude will be somewhat larger than 2.0 and

the curve will probably pass below zero. Therefore, the conclusions that may be

reached are that solutions of this type are possible_ and that a considerable

modification in the program is required to make it capable of finding these

solutions.

D. Summar_ of Planar Diode Solutions

A complete set of the various types of planar diode potential solutions

found during this program is shown in Figure II-26. The corresponding charge

density distributions are given in Figure II-27.

For emitter charge density ratios greater than about 1.25 (with _C =

and L/_= 9), the potential curve has a sharp minimum close to the emitter2kT/e

which traps a portion of the electrons. Downstream of this minimum the potential

curve experiences a sharp rise up to the plateau potential (or the inflection

point potential) and then there is another sharp rise in the "sheath" at the

collector.
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Figure II-26
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For ratios of electron/ion density at the emitter in the range of about

0.2 to 1.25 the potential curve is monotonic. These curves are represented in

Figures 11-26 and 27 by the curves for _ = 0.5 and _= 1.0. It should be noted

that the plateau potential is the same for _ = 1.0 as for _= 5.0. This is

because the plateau potential is a double-valued function of O(, as was shown

previously.

The third type of potential distribution that can occur in a planar diode

occurs for o(= 0.2. This excess of ions causes a potential maximum to occur

near the emitter which will trap most of the ions from the emitter. Then the

potential decreases and the ions are accelerated while the electrons are now

decelerated. The charge densities soon become equal and the process is reversed.

This oscillation is continued until the collector is reached.

E. Comparison of Planar and C_lindrical Diode Solutions

It is interesting to compare solutions for planar and cylindrical diodes

under similar conditions. For the case of diodes with a bias potential of

2 kT/e, a spacing of 6.6 Debye lengths (based on total ion density), and a

ratio of electron/ion densities at the emitter of 0.83, the graphs in Figure

II-28 show the planar and cylindrical distributions. The planar curve for

L/_ D = 6 is also shown; it was found by mistake because of a confusion which

is likely to occur in comparing distributions for negative and positive bias

potential. It should be remembered at all tin_s that the Debye length is always

based on the total ion density at the emitter and such problems should not arise.

From a comparison of these curves, some of the effects of geometry may be observed.
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At the collector ( which is attractive to electrons) the field (i.e.,

potential gradient) is smaller in the cylindrical case than in the planar

situation. This is because, for a space charge limited region, the current

density is approximately expressed by the following equations:

J,,_,o_-- K V_/_
%:-

J_
!

where x is the distance from the emitter, and _ is greater than unity for an

inside emitter.

In general, therefore,

Y--- IF,_</'/':_')¢Y

where_ is unity for the planar geometry.
We can then differentiate

Therefore, at a point where the current densities are equal, the slope is

smaller for the cylindrical case than for the planar case because _l for

cylindrical andS= 1 for planar.
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At the inflection point, the absolute value of the potential is smaller

for planar than for cylindrical diodes. This is because, at a given potential

in the cylindrical diode, there is a larger number density of ions due to the

conversion of angular velocity to radial velocity. Therefore the point of

equal number densities of ions and electrons (i.e., the inflection point) occurs

at a higher potential for the cylindrical situation.

Near the emitter the field is larger for a cylindrical diode than for a

planar diode. _ais is apparently caused by the larger current density at

the cylindrical emitter than at the planar emitter, necessitating a larger

field in that vicinity to carry the current.

In Figure II-29, a comparison is shown for planar and cylindrical potential

distributions for minima. These solutions were obtained for 8.5 Debye length

spacing with a bias potential of 2 kT/e and emitted electron/ion density ratio

of 2. It maybe seen that the plateau is less apparent in the cylindrical case

because of the geometry and angular momentum effects. Also the potential

minimum falls farther from the emitter in the cylindrical case because of the

conversion of tangential to radial kinetic energy. The graph also includes a

planar curve for L/_ D = 12; this again was obtained because of confusion in

comparison of Debye lengths for negative and positive potentials with emitter

density ratios other than unity.

-95-



-96-

I

I
I

I
I
I

I
I
I

I
I
I

I

I
I
I
I

I

I



l

I

I

I

I

I

I

I

I

I

I

I

I

l

I

I

I

III. INVESTIGATIONS OF CYLINDRICAL AND SPHERICAL PLASMA DIODES

A. Comparison of Governing Equations for Cylindrical and Spherical Diodes

i. Emer_y and Mom@.,ntum RelationshiPS for Char_ed Particles

These relations are identical for problems of cylindrical and spherical

symmetry.

ae

he

Momentum relations :

For electrons

VTer = const

For ions

VTir = const

Energy relations :

For electrons

e_= me (Ve2

For ions

e_ = m i (Voi2

-v 2)12
oe

The energy and momentum relations are used to determine the limits of admissible

velocities at all points in the diode. Probability distributions for all

particles within the admissible velocity range are assumed to be governed by

the distribution of these particles at the emitter.
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2. Oharg£.._ .Densit z

The general expression for charge density was given in the NAS 8-623

Contract Report, equations 7-7 and 7-8:

n(x,y,z) = /
_J

,_ -. (_II-l)
f

/ f(x,y,Z,Vx,V ,v )dv dv dvl

/ _ _ x y z
!

The distribution function f in (i) is assumed to be the Maxwell-Boltzmann

distribution:

C__

/ <.%/ ..

-- C_ C,:_:: /Jl / i
z/."4f (_r _ t<) ".t 17'..>

provided the velocity is within the range that is admissible subject

to energy and momentum restrictions; otherwise the distribution

function vanishes. The choice of + depends on whether the particular

species is being accelerated or decelerated. In the following discussion,

limits of integration are shown for the entire distribution function;

the algebraic expression for the integrand will. bc the expression

applicable to admissible velocities (non-zero distribution function),
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B. Charge Density Calculations for Cylindrical and Spherical Diodes

Equations 9C and 9S of Section Agive formal expressions of the problem

of evaluating charge density throughout the cylindrical and spherical diodes.

Before the numerical evaluation of these expressions can be carried out it is

necessary to establish a correspondence between the initial kinetic energy

2
vo and the local trajectory angle with the tangential velocity in the

spherical case. The application of the momentum and energy relations in

Section A is the same for cylindrical and spherical problems, and means that

both of these sets of correspondences are conveniently established using the

same process,

The problems which must be faced in establishing the correspondence

between variables for integration_and in carrying out the integration with

sufficient accuracy, varies somewhat according to the particular situation.

Figs._I-1 and 2 are typical of a probe situation with a monotonic potential

distribution. Fig. 1 represents the particles which are repelled by the

bias potential. At the emitter, all possible velocity vectors with components

toward the collector are included. Since the local potentials away from the

emitter are repulsive, these velocity vectors represent a loss in kinetic

energy for each particle from its initial state. Some velocity vectors for

returning particles will not be admissible. For example, particles with zero

tangential velocity and initial kinetic energy higher than the bias potential

will be able to make the transit to the collector. The boundary of the region

of admissible velocities is essentially hyperbolic with an asymptote at the

direction such that particles with very large tangential velocity moving under

-106-
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the influence of constancy of angular momentum have trajectories just tangent

to the collector. Fig. 2 shows the corresponding situation for those particles

which are attracted by the collector. The boundaries of the regions of ad-

missible velocities in this case are determined by two different criteria. A

particular velocity vector is admissible in the first place only if its kinetic

energy is greater than the potential difference through which the particle

has been accelerated: negative initial kinetic energies are not possible.

This condition gives rise to an essentially elliptical inner boundary to the

region of admissible velocity vectors. The second boundary is a boundary on

particles returning from some maximum penetration toward the collector, which

separates particles which had trajectories tangential to the collector and

just missing it from particles which actually reached the collector. This

boundary is essentially hyperbolic, with the same asymptote as was the case

for the repelled particles, but with its major axis in the perpendicular

direction. These boundaries are described as "essentially elliptic" and

"essentially hyperbolic", although they may in some cases be rigorously

elliptic and hyperbolic respectively, because the previous history in non-

monotonic cases can cause small departures from the true quadratic curve.

In order to carry out the integration of 9C and 9S with reasonable

accuracy, it is necessary to obtain points along the curves of Figs. I

and 2 spaced quite close together. Ideally, points should be obtained with

equal spacings of @ in 9C or of exponential (-vt2)in 9S so that Simpson's

rule could be used in the integration. Alternatively, some other means

for getting regular point spacing as required for other curve fit integration

methods might be considered. In this case, however, the variable of integration
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is relatively easy to obtain as a dependent variable but much more difficult

as an independent variable. It has seemed much easier to choose the

tangential velocity at the emitter as the independent variable, to follow

a particle with a given tangential velocity through the appropriate past

and future histories, adjusting the initial radial velocity if necessary

to satisfy conservation of energy, and to accept the value of the independent

variable for integration that results. Following this procedure implies that

integration will be performed by the trapezoid rule, and that increased

accuracy if necessary will be achieved by using more points. The scheme as

used has been to establish a table of 502 possible values of the initial

tangential velocity starting with O, and ranging from lO "4 to lO by ratios

of (lO) 'O1 . The three values O, lO "4, and lO are always used as part of the

definition of the integrand curve. Intermediate points are introduced until

adjacent points are spaced within some tolerance (typically 3° ) and have

successive radial velocities along the curve within a ratio of 1.5, and until

points are spaced as close as possible to critical corners such as the vertex

of the ellipse and the intersection between ellipse and hyperbola in Fig. III-2,

subject to the closeness of spacing permitted by the table of initial tangential

velocities. This has been a fairly satisfactory procedure. In some typical

cases, the normal tolerances have seemed to permit a sca_ter in the resulting

charge densities on the order of O.1 - 0.2%. In at least one case, however,

the density of points in the initial tangential velocity table has seemed to

cause a jump of nearly 15 ° between the adjacent points along the integrand

curve. In this case, there seems to be a possible error in the charge density
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calculation of nearly i_. These errors do not seem to have been the factors

limiting the success of the investigations, but additional refinement may be

needed in the future.

Fig.lll-3 shows a typical set of cutoff velocity contours for a monotonic

diode or external collector situation. The contours for the particles attracted

by the collector, the electrons, are essentially hyperbolic. The asymptote

is determined by the proportion of the kinetic energy of initial tangential

velocity which is converted to radial velocity by the constancy of angular

momentum. All the electrons make the transit to the collector; there are no

returning electrons, lons with zero initial tangential velocity are constrained

to return to the emitter unless the kinetic energy of the initial radial

velocity is greater than the bias potential. As the initial tangential

velocity is increased, the conversion of kinetic energy of tangential velocity

to kinetic energy of radial velocity makes it progressively easier for ions

to negotiate the adverse potential. At some tangential velocity, the conversion

is great enough so that all ions with this tangential velocity or more

regardless of their initial radial velocity are able to make the transit to

the collector. Beyond this point, there are no returning ions. The boundaries

of the admissible velocity region are essentially hyperbolic for outward

bound particles, essentially elliptic for returning particles. A special case

arises at the spacing which is one-tenth of the electrode spacing. This

point is close to a potential minimum at a radius greater than one where there

was a potential maximum. In this case, an additional hyperbolic boundary to

the regions of admissible velocity vectors, representing a locus of lower
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limits of kinetic energies of ions which just barely succeeded in passing

the maximum and have then undergone acceleration, appears.

The configuration from which the cutoff velocity contours of Fig. 111-3

were taken appears to be one in which some ions find that the critical barrier

potential is the collector potential, while others are unable to pass some

intermediate barrier. The contours for distance close to the emitter show

corners, which appear to separate portions of the contour determined by the

collector potential from the portion determined by the intermediate barrier.

The solid curves were those obtained with a particular representation of the

barrier. It seems likely that the barrier representation was not complete,

and that the dashed contour would have been obtained with the complete barrier

definition. The actual barrier potential increased the computed charge density

by 1-3% at small distances, as compared with the initial assumption of

charge density determined entirely by the collector potential. The remaining

area is in a less dense region of the velocity distribution spectrum so it

is believed that the charge density represented there is a small fraction of

1%. This should, of course, be checked for ultimate accuracy in a solution.
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C. Step by Step Integration of the Differential Equation Using an

Assumed Initial Slope

The most successful means for solving Poisson's equation for the plasma

diode problem, at least for the external collector case, seems to have been

the step by step numerical integration starting with an assumed initial slope.

This technique has been used when the charge density distribution is determined

only by the past history (the potential distribution between the emitter and

the local point), and the collector potential. It has also been used effectively

in cases where a potential extremum in the opposite direction from the collector

potential, close to the emitter, serves as a barrier to some of the particles,

and in the case there is a potential extremum in the same direction as the

collector potential. Situations evaluated so far have been limited to those

where the proportion of charged particles reflected by a barrier close to the

emitter is only a few percent of the particles whose motion would otherwise be

controlled by the collector potential. Consequently, it is not yet known

whether the procedure would be equally effective for cases where the local

barrier is the dominant feature. An example of this situation might be a

case where the collector bias potential is attractive to electrons and the emitted

electron current is very small compared to the emitted ion current, so that there

sould be a potential maximum close to the emitter at a level greater than the

bias potential.

In this investigation, the Blaess method for integrating an ordinary diff-

erential equation has been used in preference to the more common Runge-Kutta,
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Adams-Moulton, or Adams-Sturmer methods, primarily because of its simplicity

and its flexibility for arbitrary variation of the interval of integration.

The basis for any of these methods of integration of ordinary differential

equations is the manner in which higher order derivatives are used for

extrapolation and for improving the solutions. Most of these methods evaluate

the higher order derivatives from previous history and, consequently, are

more or less dependent on retaining the same interval of integration. In

the Blaess method, higher derivatives are determined from data acquired in

a series of five integration steps and used to improve the integral values

at these steps. The interval of integration may be chosen independently for

each sequence of five steps. The author's introduction to this method came

by third-hand contact with a scientist who had been engaged in studying captured

German documents after World War II. No derivation was given at the original

contact. Later efforts to produce such a derivation was given at the original

contact. Later efforts to produce such a derivation led instead to the

conclusion that there were albegraic errors in the formulas provided. Con-

sequently, the formulas were derived again from scratch; the derivation is

produced in the Appendix.

The logic behind the use of the assumed initial slope and subsequent

step by step integration is described in simplest form for those cases where

the only subsequent history that need to be considered is the bias potential

at the collector. In this exposition the bias potential will be assumed to be

positive or attractive to electrons.
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The range of validity of the assumption about future history lies

roughly in the range where the charge density attributed to emitted electrons

is greater than 0.4 times the charge density due to emitted ions (since almost

all ions are repelled by the collector bias potential, the total charge density

due to ions is roughly double this level) and less than 2.0 times the emitted

ion density. Within this range the electron charge density decreases more

rapidly under the acceleration of a small potential difference than the decrease

of the ion density due to repulsion. If the net charge density is not

initially positive (ion rich) it quickly becomesso. Fig. III-4 illustrates

the problem of obtaining the solution.

The solution is knownto lie entirely within the rectangular area

defined by the spacing from the emitter to the collector and by the potential

range from the emitter potential to the bias potential. At very low plasma

densities (electrode spacing a fraction of a Debyelength) the space charge

has a negligible influence on the potential distribution. In the absence of

better information the initial slope maybe assumedto be that appropriate

for a linear potential distribution. It is always desirable, of course,

to use the best available estimate for the initial slope.

As the net charge density becomespositive, the potential distribution

curve has negative curvature and the calculation of the potential distribution

falls below the projection of the initial slope. Characteristically, the

calculated curve oscillates, remaining positive throughout and rising slowly

as the average charge density decreases slowly with increasing radius. The
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calculation is discontinued when the integration has been carried past the

distance associated with the electrode spacing. Curve _ 3 on Fig. III-4

represents this situation. The integration interval must be kept small

enough so that several of the five-step sequences of the Blaess method of

integration fall within each wave length. Since the wave length usually

starts out being in the neighborhood of three Debye lengths, satisfactory

results have been obtained by choosing 0.i Debye lengths as the initial

step, giving 6 five-step sequences in each wave length. The wave length

tends to increase as the radius increases the size of the integration step.

If the initial slope is too large, the integrated potential distribution

curves look like curves 2 and 5 of Fig. III-4. Curves 2 and 3 of Fig. III-4

cross opposite sides of the rectangular area and indicate outer limits to the

true solution. Subsequent slopes are assumed in between the previously

considered limiting values. Thus, curve # 4 has too low an initial slope but

passes closer to the desired end point than curve # 3- Curves 5 and 6 have

initial slopes that are too large; these curves show progressive improvement.

Curve 7 passes very close to the correct end point. Curve # 4 shows quite

clearly how the initial wave length of the first oscillation is between

2 and 3 Debye lengths while the wave length of the second oscillation is

approximately 5 Debye lengths, illustrating the potential value of ability

to adapt to variable integration steps. For the final solution under these

conditions just one oscillation remains. It appears to be characteristic

that some locus exists, suggested by the dashed line, above which the net

charge density must necessarily be negative (or electron rich). Below this

level either positive or negative net charge densities may exist depending
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upon whether retardation of the ions in the average overall adverse potential

gradient or acceleration in a locally favoring potential gradient happens

to be dominant. The correct solution has progressively less net positive

charge density at each following potential maximum until the distribution

curve passes through the locus, after which an electron rich sheath extends

the remaining distance to the collector.

Once a trial solution of the type demonstrated in Figure 111-4 has been

obtained it is appropriate to check on the validity of the assumption that

the collector potential was actually the only feature of the potential

distribution curve to determine ion repulsion. The general regions which

may impose a more severe repulsion than the collector on the ions can

easily be found. These are the regions close to the emitter where the adverse

potential gradient is most severe. Provisions are made for testing several

points along this portion of the curve for a possible repelling influence on

various portions of the ion distribution spectrum.
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D. Use of Cylindrical Diode Computer Pro_gr__a.m

CYLDIODE is a computer program developed at the Evendale, Ohio install-

ation of the General Electric Company for the IBM 7094 computer. It has been

written in Fortran II language. Since, however, it makes use of several features

of the Fortran compiler that are apparently peculiar to the Evendale install-

ation, some special precautions are required by any user who desires to make

modifications. In particular, decimal input is handled using GE DING, the

TABLE statement is used to present the list of input variables' and for various

other purposes, FORMAT GENERATOR is used to generate the format for printed

output, and GE ERROR is used for various error checking purposes. In addition,

one subroutine, CUTOFF, has been extensively modified in machine language, re-

sulting in an improvement in operating efficiency by a factor of 2-3. The

program is available in self-contained form for use with any IBM Fortran II

monitor. Normal practice at the Evendale installation is to use tape A2 for

input and to write output, both printed and punched card, on tape A3. Modifica-

tion for other systems is readily accomplished. In particular, operation at

the NASA Marshall Space Flight Center is carried out with input on A3, printed

output on A2, punched card output on A5. Provisions have been made for

program exit at the end of an iteration by depressing Sense Switch 4. Summary

write-ups on the features of the DING, ERROR, TABLE are included as Appendices.

Description of the use of CYLDIODE will be presented, giving first the

minimum input for a cylindrical plasma diode (with external collector) using the

technique of iterating on the assumed initial slope under the assumption that
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the potential at the collector is the only item of future history which is

needed for charge density evaluation. Second, the use of additional features

which are helpful in expediting convergence and/or allowing for intermediate

potentials which serve as barriers to some particles will be described. Third,

some problems connected with program operation for internal collectors (a

problem which has not been solved in a very satisfactory manner) will be

discussed. Fourth, some discussions will be given of the technique of

assuming the entire potential distributions, calculating the charge density

distribution appropriate for the assumed potential distribution, double

integration of the charge density to satisfy the boundary conditions, and,

based on the results, choice of a new assumed charge distribution for another

iteration.

io Minimum Input for Cylindrical Plasma Diode Confi$urations

Table,I-L summarizes the minimum input required for obtaining cylindrical

plasma diode solutions. Symbols designating input variables are capitalized

with c_ma's separating data fields. Symbols are listed on separate lines for

clarity but may be punched on a single line up to the card capacity of columns

2-72. Be = in column i for the end of the data record may be punched in

column I of the last card of data in the set. With this minimum input given

the program will normally assume that the initial 'slope is the same as the

average potential gradient from the emitter to the collector. Integration

will then be carried out with i_0 Debye length steps. _his step size will

then be maintained at least until the first time when the net charge density
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TABLE I [I-1

MINIMUM INPUT FOR CYLINDRICAL PLASMA DIODE CONFIGURATION

O

KEND, 7, identification of the manner of obtaining the solution.

INSIDE, 4, designates the configuration, diode or external

collector with electrode spacing as a fraction of emitter

radius and plasma density given as a number of Debye

shielding lengths in the electrode spacing.

MONTH, __, __, __, month, day, and year (2 digits each) of
the calculation.

KPRINT, 2, asks for printout of all integration steps, otherwise

a maximum of 40 to fit on a single page would be printed.

POT, __, the collector bias potential in units of kT/e.

DEBYE, .... , the number of Debye lengths in the electrode spacing.

SPACE, ___, the ratio of electrode spacing to emitter radius, must

be negative for external collectors.

ETA, __, the ratio of charge density due to emitted electrons to

charge density due to emitted ions.

end of data record.
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changes sign from positive to negative ( in the case of the positive bias

potential; it would be negative to positive in the case of a negative bias

potential). After this point the step size will be increased at any time

when more than 15 integration steps are carried out between changes of size

of the net charge density. Integration is carried out until either the

distance from the emitter equals the electrode spacing or the potential

reaches the bias potential. Then the direction of the error is observed and

an appropriate adjustment to the initial slope made. The magnitude of the

adjustment will be 30% of the curve slope or 30% of the bias potential which-

ever is the larger. After 2 successive potential distribution curves have

straddled the desired input, successive initial slopes will be chosen by

interpolation. An error estimate is given by the intercept of the potential

distribution curve with the distance of the electrode spacing. This intercept

will be determined by extrapolation of a straight line through the last two

calculated points for potential distribution curves passing beyond the

prescribed end point. Interpolation will be linear after the first pair

of curves has straddled the desired answer, by a parabolic curve fit there-

after. The program will normally stop after ten iterations if the desired

end point potential has not been matched within 10 .5 at that time. The

actual practice has always been to use some means for improving the estimate

of the initial slope, so there has been no serious effort to determine whether

the minimum input would be sufficient to obtain solutions. It is difficult

to give a good estimate of the computer running time since this depends

strongly on the number integration intervals. With 40 Debye lengths electrode

spacing and with 2.0 kT bias potential, a potential distribution curve falling
e

below the bias potential has been found to use about 200 integration intervals

requiring approximately 3 minutes. Curves passing above the desired potential
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tend to have much larger integration intervals since waves in the solution

are much less likely to be present, and the integration intervals are rapidly

increased. Also the distribution curve passes beyond the assigned limits at

an earlier distance, which further reduces the number of integrations which

must be carried out. The running time is proportionately less when the elec-

trode spacing is a smaller number of Debye lengths.

Obtain i_C__lindrical and Spherical Diode Solutions

Table III-2 gives a summary description of optional input which may be added

before the end of record designation in Table III-1 for increased flexibility.

Many of the optional input values listed in Table III-2 should be self explana-

tory.

Provision _or varying ANGTOL, VELTOL was made at a time when some erratic

behavior of the net charge density_ an extremely small difference between very

nearly equal ion and electron charge densities was observed. Some subsequent

investigation suggested that the erratic behavior might be a consequence of the

minimum spacing in the Table of values for initial tangential velocity, even

though that spacing is very small. In the investigation, up to the time of

preparation of this report, the slightly erratic behavior has not been a serious

obstacle to the progress of the investigation.

It is almost always desirable to use an input slope for the initial slope.

The standard value is a lower limit, a rather remote lower limit, for those
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TABLE III-2

OPTIONAL INPUT FOR FLEXIBI-LITY IN SOLUTION OF CYLINDRICAL AND SPHERICAL DIODE

PROBLEMS.

i

I
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I
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I

I

I
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KYLSPH,2, designates a spherical diode solution.

NLIM, ____, defines a maximum allowable number of iterations different from
i0.

SLOPE, __, is an initial slope to be used for the first iteration, if a
different choice from the standard is desired.

DSLOPX,__, is an arbitrary increment for changing the initial slope which

may be specified in preference to the normal 30% change.

POTI, ____, _ ..... ,, Arrays defining a previously calculated potential

distribution passing beyond the desired bias

XPOTI,__, __, ...... ,, potential. POTI refers to the potentials,XPOTl

to the distances at which these potentials are

found. _he array inputs must end with two co_,as.

SLOPEU, _ is an initial slope for the potential distribution array, POTI

if the normal numerical derivative formula is not expected to

be sufficiently accurate.

POT2, ___._, _ .... ,, arrays defining a previously calculated potential

XPO_2,_______, .... ,, distribution passing inside the desired potential.

SLOPEL, _____, is the initial slope for the POT2 distribution

JFIRST, __, is a number, i + 5n, of values in the POTI array which are

to be exempted from further iteration.

TOL, __, is a convergence tolerance different from 10 -5.

POT, __, i, ..... , _____, __,, is an array of pairs of values, potential

and distance from the emitter defining barrier potentials to be

considered in evaluating charge density. These value pairs are

to be in order of decreasing distance from the emitter. A

maximum of 30 pairs is permissible. Note that the double comma

ending the array is essential here, but is not to be used in

connection with the single bias potential of the minimum input.

ANGTOL, __, is an angular tolerance on successive points along cutoff

velocity contours if this should be different from 3° .

VELTOL, __, is a radial velocity ratio tolerance between successive points

along cutoff velocity contours, if this should be different

from i. 5-
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Table III-2 t Continued

WRITE, __._, _ is a series of up to 20 distances at which printout
of the cutoff velocity contours is desired.

NWRMAX, _____, is the number of WRITE values.

F_T, _, is the number of integration intervals in a Debye length

for use at the start of the integration, if different

from i0.

-126-

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I



!

I

I
I

I
i

I
I

I
I
I

I

I
I

I
I

cases where the charge density close to the emitter is nearly neutral. As

was mentioned in connection with the minimum input, the computer running

time for a potential distribution passing beyond the desired bias potential

tends to be much shorter than that for a potential distribution passing

inside the bias potential. Consequently, it is desirable to specify the

first initial slope in such a way that the exploratory iterations prior to

straddling of the solution shall be carried on in the regime outside of the

desired end point.

It may happen that a series of iterations has previously been performed

without arriving at satisfactory convergence, either because the specified

number of iterations was insufficient or because the estimated running time

was insufficient. In such a case, it is desirable to estimate the next

value of SLOPE to be used from the previous trend. It is also desirable to

put in some record of the best available approximation to the solution on

either side of the correct solution. This is the function of the inputs for

POT1, POT2, XPOT1, XPOT2, SLOPEU, and SLOPEL. As far as the mechanics of the

program are concerned, skeleton values of the arrays are sufficient. The

skeleton consists of three values: The zero initial potential and distance,

and two values defining the end of the distribution curve for use in measuring

the error. The remainder of these arrays, if input, is reserved for use in

making a prlnt-out comparison of the difference in potential between curves which

pass above and below the desired end point.
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It was anticipated in the course of development 0_ the computer program

that situations might arise such that curves passing inside and outside of

the desired end point might eventually produce series of points close to the

emitter such that the difference between them could not be distinguished within

the eight significant figure accuracy of the computer. The variable JFIRST was

introduced as a means for specifying that such points should be considered as

fixed, and iteration continued from a point where the difference between the

inside and outside curve could be detected. This feature has not been tested

in the investigations to date.

The provision for input of pairs of values, potential and distance, so that

the calculation would not be restricted to cases where the collector bias

potential was the sole factor determining how many charge particles are returned

to the emitter, appears to be generally satisfactory. The feature has served

its purpose for cases in which a steep potential gradient close to the emitter

serves to return 2-3% more of the emitted particles than are turned back by the

collector. The feature has also been tested and found to work in situations

with anextremum near the emitter opposite in sign to the bias potential. The

program will discontinue the iteration,_if it finds alocal potential extre_

beyond the specific extremumby more than 10% of the blas potential. It is

reasoned that any curve, which has an extremummore than 10% of the bias potential,

beyond the specified extremum and in the opposite direction from the bias

potential and then still passes outside of the bias potential, already shows

that the specified potential curve definition is not adequate and that a new

distribution should be input which act as a barrier to more of the particles.
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It has been considered beyond the scope of the present investigation to make

the choice of the series of barrier potentials automatic in the program.

3- Solutions for Probes or Internal Collectors Using the Assumed

Initial Slope

The manner of execution of CYLDIODE is intended to make its use possible

for internal collectors or probes. The probe problem has turned out to be

substantially more difficult than the diode problem. In contrast to the diode

problem, where approximate solutions can be obtained in many cases by assuming

that the charge density is determined by the past history of integration from

the emitter and a single future history point at the collector, and where

considerably greater refinement is possible by the use of three of four

additional defining points which are generally located close to the emitter,

the critical barrier potentials in the probe case are usually to be found close

to the collector. Experience in getting the solutions of this type has been

exploratory in nature without conspicuous success, so discussion of it must be

speculative.

Table III-3 lists inputs for the probe investigation different from those

input variables contained in Tables III-2 and III-2. The chances of obtaining

solutions without the initial input of several points defining a prediction

of the potential distribution curve seem to be slight. Figure III-5 shows

input quantities that were attempted for one representative case. Apparently this

prediction is not very good. With this general slope of the predicted potential
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TABLE III-_

INPUT FOR CYLINDRICAL AND SPHERICAL PLASMA PROBES

0 0
0 0

INSIDE, 3, designates the configuration, probe or internal collector, with

electrode spacing given as a fraction of emitter radius and plasma

density given as a number of Debye lengths in the electrode spacing.

SPACE, _, the ratio of electrode spacing to emitter radius, positive for
internal collectors.
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distribution it is found that a progressively larger proportion of the

electrons reaching particular radii are able to negotiate the barriers and

reach the collector. In the presence of small magnitude repulsive potentials

the ion density remains nearly constant. In every attempt so far, the elec-

tron density drops below the ion density, however, leading to negative

curvature of the calculated potential distribution curve. It is, of course,

necessary for the ion density to drop finally below the electron density to

give the positive curvature which can lead to the bias potential. It is

believed that the lack of success to this point reflects lack of understanding

as to the nature of the potential distribution curve which should be expected.

A possible procedure in continuing the investigation is to use the predictions

on Fig_l_5 and raise the initial slope until one is found large enough so that

the net charge density does become and remain electron rich. The shape of

the curve obtained in that way should give a much better clue than has yet been

available, as to the real nature of the barrier potentials for electrons.

Past investigations have shown that oscillatory type solutions are probably to

be expected. There is no information to permit deductions as to whether the

wave lengths of such oscillations increase with distance from the emitter toward

the collector, as was the case for the diodes, or whether, as is perhaps more

likely, wave lengths decrease and amplitudes increase in this direction. In

the probe situation, conditions near the emitter are expected and desired to

simulate an infinite plasma which should have only infinitesimal disturbances.

If then, disturbances are present they should at least increase in magnitude

as the collector is approached. By analogy with probe results it seems likely

that an increase in magnitude will be accompanied by a decrease in wave length.
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_. Solution by Iteration on an Assumed Potential Distribution

Many of the results were obtained during the course of this study with

the technique of iterating on an assumed potential distribution. At the

time of writing this report, it is believed that this technique is obsolete

and that all results obtained with it could have been obtained more easily

by the initial slope technique. Since, however, some future application

may be treated more easily with its use, some discussion of it may prove

rewarding. Input variables are listed in Table I_. Some of these have been

discussed in previous paragraphs, but have broader significance or specialized

requirements and are repeated for this reason.

_he simplest way to get started on any problem using this technique

is to assume that the input points are to be equally spaced and to use a

linear potential variation as the assumed input potential distribution.

would be accomplished by using the minimum set of inputs as listed in par_

A of Table 4. For this purpose, KEND should be it,put as 2. With the do ta

set up in this manner, one iteration will be performed. _ne results will

be printed out (if KPRINT has been input as 2) and the program will return

to read more data. It will quit if the additional data is not available.

This

The next added sophistication in the use of the progrsm comes by using

KEND = 3 or 6. Be first iteration will be performed In the manner described

in the previous paragraph. The input of the value for WEIGHT and EEND = 3

allows the program to choose a new potential distribution for use in the

second iteration by combining the assumption for the first iteration and the
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4

TABLE III-4

INPUT FOR ITERATION ON ASSUMED POTENTIAL DISTRIBUTIONS

A. Necessary Input Variables

POT, __, collector bias potential.

ETA, __, ratio of charge density near emitter due to emitted
electrons to charge density due to emitted ions.

INSIDE,__, = 1 for probe with collector radius as fraction of

emitter radius, emitter radius in Debye lengths.

= 2 for diode with collector radius as fraction of

emitter radius, emitter radius in Debye lengths.

= 3 for probe with electrode spacing as fraction of

emitter radius, spacing in Debye lengths.

= 4 for diode with electrode spacing as fraction of

emitter radius, spacing in Debye lengths.

DEBYE, __, number of Debye lengths in emitter radius for INSIDE

equals 1 or 2. Number of Debye lengths in electrode

spacing for INSIDE equals 3 or 4.

RAD, __, ratio of collector radius to emitter radius for INSIDE

equals 1 or 2.

SPACE,__, ratio of electrode spacing to emitter radius, positive
for INSIDE = 3, negative for INSIDE = 4.

J_, number of points for charge density evaluation and

potential calculation, must be odd.

KEND_ __, = i erase potential history after completing current

iteration, read more data.

= 2 retain potential history after completing current

iteration, read more data.
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Table III-4 t Cont,d

= S perform NLIM iterations using WEIGHT on POTI

array, (I - WEIGHT) on POT2 array, then read
more data.

= 6 perform RLIM iterations choosing weight factor

to eliminate error between POTI and POT2 at

midpoint.

= end of record

B. Optional Input Variables

ANGTOL, KPRINT, KYI_PH, MONTH, NLIM, NWFMAX, TOL, VELTOL, WRITE are

optional input variables with the same significance as in Table I or

Table II.

POT1, _ __, .... ,, is an array of potentials, thought of as the input

assumption for the previous iteration (the double commas
signal the end of the array).

POT2, _ _ ....,, is an array of potentials, thought of as the output
of the last previous iteration.

WEIGHT, _ is the weight factor assigned to the POTS. array in establish-

ing the assumed distribution for the new array; (I-WEIGHT)

is the factor assigned to the POT2 array.

KPOT, I, is to be input to make use of the WEIGHT feature.

KRAD, i, is to be input if it is desired to use an array of calculation

point distances which are not equally spaced.

RADII, _,._._..., .... ,, is an array of radii or distances, called for by
KRAD = i, when variable spacing between points is desired.

Points must be in pairs with equal spacings from the previous
points.

JMIN, ___._, an odd number (_ I) if it is desired to restrict iteration

to a portion of the interelectrode spacing starting with
position no. JMIN.
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result of that iteration in the proportions WEIGHT for the assumption and

(1-WEIGHT) for the result. After a second iteration, the process is repeated,

applying the factor WEIGHT to the input assumption for the second iteration,

and again, (1-WEIGHT) to the result of that second iteration. This process

is repeated NLIM times or until the convergence test has been satisfied before

returning to read more data.

With the option KEND = 6 the first and second iterations are performed

in the same manner as under option KEND = 3. Subsequent iterations are

carried out using a process shown schematically in Fig.Z%. Here the assumed

potential at the mid point between electrodes for each iteration is plotted

as abs_ss_ the calculated potential at that point is the ordinate. It is

supposed that a smooth curve connects all possible pairs of values of this

type, so that choice of a proper weight will serve to choose an input potential

which can be carried through the process and result in returning the same

value. It is further supposed that all other potentials deserve modification

in the same proportion as the mid point potentials. The use of this procedure,

when and if the suppositions are justified, frees the calculations from

dependence on the suitability of an arbitrary choice of weight factor.

Unfortunately, the supposition that potentials away from the mid point

behave in a manner proportional to the potential at the mid point is often

quite far from the truth. In particular, it often seems that there may be a

sort of neutral plasma locus (like the dashed line of Fig.III-4). If the potential

distribution could be imagined to lie along this locus and then be subjected
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Figure III-6: Schematic of _edure for Choes_ng Weisht Factor wlth _ - 6.
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to a local disturbance, either positive or negative, it would be found that

the net. charge density changes sign in the same direction and leads at the

end of the next iteration to an erratically different estimate of the potential

distribution. In that respect one many conclude that this technique of

iteration on the assumed potential distribution worked as long as plasma

densities are low enough so that the actual potential distribution curve

crosses the neutral plasma locus at a sufficient large angle, so that most

potential disturbance s of reasonable size do not result in change of sign of

the net charge density over an extended range. This condition appears to be

satisfied if the electrode spacing is i0 Debye lengths or less, and is

definitely violated for an electrode spacing of 20 Debye lengths or more.

A part of the success or lack of success in using this technique depends

on the ability to choose suitable values for the weight factor. The most

appropriate weight factor changes rapidly with the plasma density. With elec-

trode spacing of perhaps 6 Debye lengths a weight factor of 0.5 may be suitable.

At lO Debye lengths electrode spacing, the best weight factor is ordinarily at

the level of 0.9, and at 15 Debye lengths electrode spacing, the best weight

factor is apparently around 0.97. This optimum probably also depends on the

electron-ion density ratio and perhaps on the level of the collector bias

potential.

Some experience showed that the tailoring of weight factors to meet the

immediate situation as carried out as KEND = 6, works well for the first several

iterations and then starts giving erratic results. This situation arises when
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proportional displacements of the assumed potential curves are fairly good

for large errors at the mid point but inappropriate for small errors. It

has been found appropriate to use 3 or 4 iterations using the KEND = 6 tech-

nique followed by several other iterations using the standard, arbitrary weight

factor technique (KEND = 3). To follow this technique, the number of iterations,

NLIM, is specified with the input for KEND = 6 after which the program is to

read more data which will be a new value of NLIM and the new designation of

KEND.

It sometimes happens that it is desired to use a potential distribution

from a previous case, with a small change in one or two of the parameters. This

potential distribution cannot be input directly for use with KEND = 6 because

there will be no way to inform the program with KEND= 6 option that the input

data do not constitute a legitimate set of assumed input and calculated result.

Using the EEND= 3 technique, it would be permissible to give the same distri-

bution as input for POTI and POT2 using whatever weight factor is desired.

If, however, it is desired to perform several iterations using KEND= 6 it is

suitable to start with one iteration using KEND = 2, the assumed distribution

input with POT2, and EIGHT = O. After the first iteration is complete, the

program will read more data which now can consist of an appropriate value

of WEIGHT and'the designation KEND= 6, wlthNLIMalso input as desired.

One hazard in the operation of the program is met if rapid change in the

slope of the potential distribution curve occurs in some portions of the

inter-electrode space. In meeting the requirements for the solution in this

region, it is at leastnecessary for the calculation points to be speced closely
.
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enough together to define the slopes in the region of sharp curvature. This

is the kind of situation under which the optimum of variable point spacing may

become useful. The points may be spaced farther apart in the regions where

the slope changes only slowly and close together in the regions of sharp

curvature.
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5- THE THE_IONIC DIODE

The thermionic diode is a plasma diode in which only one species of

particles is present. Since there is no change of sign in charge density,

P

the curvature of the potential distribution curve is always in the same

direction. Solutions of thermionlc diode problems are found to fit into

two classes depending on whether there is or is not a potential extremum

in the opposite direction from the bias potential. If there is no such

extremum all emitted particles succeed in making the transit to the collector.

The charge density of any point can be determined by knowing the potential

there relative to the emitter potential. The differential equation is one

which can be solved directly with the slope of the potential distribution

curve at the emitter as a parameter. If, however, there is an extremum in

the opposite direction of the bias potential, this extremum will serve as a

barrier potential, sending some particles back toward the emitter. Between

the emitter and the extremum, the entire history of the potential distri-

bution contributes to determining the local charge density. It is necessary

to iterate to obtain a consistent distribution in this region. Once the

extremum has been passed, an extrapolation or a simple step-by-step integration

gives a uniquely defined curve which then gives the local potential as a

function of radius ratio. In principle, thermlonic diode potential distri-

butions for all radius ratios can be obtained in terms of two independent

parameters: the ratio of Debye length to emitter radius close to the emitter,

and the slope of the potential distribution curve at the emitter.
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Table lll-5describes input variables so that the CYLDIODEprogram may

be used to carry out the step-by-step integration/extrapolation for regions

of the thermionic diode in which the future history no longer has any influence

on the charge density_ For the cases having the extremumin the opposite

direction from the bias potential, the distribution from the emitter to the

extremumwould be obtained by either the method of the integration with an

additional slope and isolated varying potential definitions, or by the method

of iterating on an assumeddistribution. Provisions have been madefor

automatic transition from the integration on an assumeddistribution. Trans-

ition may be madeautomatically, if the potential distribution to the

extremumhas been obtained by iteration on the assumeddistribution, by

simply reading the appropriate values of KEND,JIMAX, and XRAD.
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TABLE III-5

INPUT FOR EXTRAPOLATION OF THERMIONIC DIODE SOLUTIONS

KEND, 5, designates this mode of operation.

XRAD_ m_ denotes the radius increment to be used for extrapolation,

must be negative.for INSIDE = 2, not permissible for other
values of INSIDE.

JIMAX # _# the number of the last point of the extrapolation, must be

greater than Drevious _J_X or JiMAXby a multiple of 5.
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E. Results of Cylindrical and Spherical Diodes and Probes

The useful numerical results which have been obtained from CYLDIODE

computer program can be described in three groups. First, a fairly ex-

tensive collection of data has been obtained for cylindrical diodes where

the electrode spacing is not greater than 15 Debye lengths. Second, sample

results have been obtained for both cylindrical and spherical diodes for

Debye lengths ranging from 1/15 to 1/40 of the electrode spacing. Third,

results have been obtained for cylindrical probes for Debye lengths not

shorter than ]./lO of the emitter radius, with some additional experimentation

at Debye lengths as small as 1/30 of the emitter radius.

The simplest case of the cylindrical plasma diode is that when only

one species is present, the thermionic diode. Figure III-7 shows a series of

potential distributions for a thermionic diode with 1.3 radius ratio, at

fixed bias potential, and for varying charged particle density. Unfortunately,

the data for Figure III-7 were obtained early in the development of the

computer program. At that time the program was not given a valid current

calculation. Consequently, current calculations were not available for

inclusion in this report. It is clear from Figure III-7 that increasing the

number of emitted particles results first of all in increasing the magnitude

of the potential barrier against transmitting current between the electrodes.

The absolute magnitude of the current depends, of course, on the effective temp-

erature of the particle velocities and the reference Debye length. (See equations

III-13 and 14). In making a study of the absolute level of current density it

should be noted that Figure III-7 refers to a thermionic diode transmitting ions.
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its present form the program takes ion densities as reference, making no

special provision for treating the case where only electrons are present.

For a diode transmitting electrons the curves should be inverted.

Figure lll-8a to lll-8e show influences of an electron background on

the potential distribution and consequently on the ability of the diode to

transmit ions. All curves in this group are for plasma densities low

enough so that the Debye length based on ion density is greater than 1/15

of the electrode spacing. This is the regime in which net charge densities

change sign no more than once, a situation which simplifies the problem of

obtaining solutions considerably. The large excess of ions always tends to

produce a barrier potential for ions which will drive a sufficient pro-

portion of these particles back to the emitter so that the plasma can stay

near-neutral throughout most of the interelectrode space. The higher the

base density of the plasma is, the more closely localized the region of

excess ions is in the neighborhood of the emitter. Figure III-8c may be

compared with Figure II-16 to show the similarity of the phenomena to be

found in planar and cylindrical plasma diodes, when the curved geometry

does not become a dominating influence on the characteristics.

When the plasma density gets high enough so that the Debye length is

less than 1/15 of the electrode spacing the extent of the near-neutral plasma

seems to become large enough for vulnerability to instabilities. Figure III-9

for spherical diodes shows this situation very clearly. When the Debye length

is 1/lO of the electrode spacing there is one inflection point in the potential

distribution showing that the net charge density changes sign only once.
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Reference to Figure III-i0 shows that the distance over which the net charge

density is less than 1% of the charge density of the individual species is

approximately 1/2 Debye length. When the Debye length is 1/20 of the elec-

trode spacing, there are approximately 5 Debye lengths in which the net

charge density is less than 1% of the density of the individual constituents.

Three inflection points showed clearly in the potential distribution curve

of Figure III-9. Carrying on one step further, when the Debye length is 1/40

of the electrode spacing, the distance over which near-neutrallty is found

is approximately 25 Debye lengths. At least seven inflcection points are

visible in the potential distribution curve. Figure III-11 shows results

for cylindrical plasma diodes in the region where the range of near-neutral

plasma is extensive: the general appearance of the cylindrical and spherical

results are quite similar.

The problems of obtaining potential distributions in cylindrical plasma

probes have turned out to be considerably more difficult than those for

plasma diodes. Results have been obtained for cases where the plasma density

is low enough so that the Debye length is greater than 1/lO of the emitter

radius. Representative results are presented in two alternative forms,

Figure III-12 and 13. The second form, Figure III-13 was prepared in an effort

to investigate whether there might be an electron rich sheath which will

show a characteristic dimension is measured in Debye lengths. It seems

possible that such a trend should be present but the plasma densities

represented in Figure III-13 are all too small to establish the existence of

that situation. The probe configurations with Debye lengths greater than 1/lO

of the emitter radius and the diode situations with Debye lengths greater than

1/15 of the electrode spacing seem to show the common characteristic that
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there is no tendency to have a region of near-neutral plasma extending more

than a fraction of a Debye length.

The probe analysis runs into difficulties, for which no solutions have

been found as yet, as soon as any extended region of near-neutral plasma

seems to be demanded. The difficulties may be demonstrated by considering

the series of iterations on an assumed potential distribution in Fig. III-14.

The 30 Debye length electrode spacing was chosen on the basis of planar

diode results as about the lowest at which plateau phenomena could be expected

to dominate the potential distribution. The ratio of electrode spacing to

emitter radius, 0.1, the collector bias potential, 5 kT/e, and the choice of

the external collector were all arbitrary: the problem of satisfying these

conditions_roved to be a more than sufficient challenge.

The investigations consisted of a series of assumed p0tential distri-

butions used to determine the charge density distribution, and then the

potential distribution implied by the charge density distribution. The

series of assumed and calculated potential distributions, and the errors

between those, is shown in Fig. III-14. It does not seem practical to

describe the thinking behind all of the trials individually. Instead, the

approachwill be to try to illustrate the lessons learned and the possible

future approach to an automatic solution.
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The initial sequence of trials a to i represents the portion of the

investigation aimed at finding a possible solution of the cylindrical

diode equation. (Trial b actually belongs ahead of trial a in the sequence).

The starting point was the planar diode solution for the first 8 Debye lengths.

Then the predicted slope for the next ]2 Debye lengths was drawn from

previous experience. Finally the planar diode results were adapted to provide

an estimate of the situation close to the collector. Trials a and b

demonstrate that monotonic charge density remains ion rich to a higher

potential than the .765 kT/e value for the inflection point of the planar

diode solution. The potential level in the plateau region was allowed to

rise gradually by modifying the previously assumed potential with a small

proportion of the difference between assumed and calculated distribution until

the trial c resulted. At this point a tendency appears for the charge

density on the knee at the emitter end of the plateau to be more ion-rich than

the density closer to the collector, with the result that more correction to

the potential distribution is demanded at x = .25 than at x = .5. In retro-

spect it appears that the error at x = .95 could have been liquidated without

significant influence on the situation from x = .1 to x = .75, which is the

critical region. This was actually done after trial f. Trials g, h, and

i repeated the tendency found in trials f, d, and e, (the correct order) but

not accepted in the earlier group. Here the indicated change is to raise

the potential around x = .25 and to lower the potential around x = .5. Doing

this, however, sets up an acceleration situation for the ions which get past

x -- .2, and causes the net charge density to move rapidly in the electron-

rich direction. This in turn amplifies the indicated error. The conclusion

as found in trials e and i could no longer be ignored: there were no stable

monotonic potential distribution to be found.
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Starting the trial j the investigation was directed toward the

possibility that a stable solution might take a wavy form. In the cylindrical

case the obstacle met in the study of oscillatory solutions of the planar

equation was no longer insuperable. The potential distribution would no

longer have to be symmetrical around each extremum, so successive extrema

could have different heights. 'lhen, the average charge density over the

wave length might be close to neutral, and stably so, even though the local

density would not be for any significant distance. Following up this

approach, the initial wave length and amplitude were based on the planar

oscillatory results of the January report. Unfortunately, those results were

not definitive as to whether either the wave length or the amplitude might

vary with the magnitude of the ion-rich charge density at the local maximum.

Trials k, l, and m are illustrative of the possibility of producing any

desired average charge density for fixed potential maximum by varying the

wave amplitude. It is not so easy to see whether a stable wave amplitude

is implied by the relations between the waves in the calculated distributions

and the waves in the assumed distributions. The evidence from various trials

appeared to be conflicting in this respect. Trials p and q demonstrate that

fairly good accuracy could be obtained by the rather hit-or-miss procedure

used. There is, however, no evidence available as to whether the wave

length used is a particularly good one or whether the results could be this

good for any wave length, and whether a limiting accuracy will always be

found unless all wave lengths, variable or not, are exactly right.
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If it is assumed that the results to date are encouraging about the

existence of stable wavy solutions, it is possible to speculate on more

detailed characteristics of the solutions, and how these might be used to

expedite actual production of the solutions. In the first place the charge

densities do not vary very rapidly with potential for potentials more than

0.i or so above the level at which the charge density finally becomes

electron-rich permanently, or more than 0.i below the first potential,

maximum and between the emitter and the first maximum. Consequently, the

potential distribution in both of these regions should be amenable to a

direct procedure for enforcing conformity with the charge density. Perhaps

it may be feasible to establish a catalog of solutions from the emitter to

points approaching a first maximum when the local charge density depends on

the slope of the distribution curve as well as the actual potential level

there. These would be solutions having the initial slope as a parameter.

Presumably this has to be done for each ratio of distance from emitter to

maximum to emitter radius, but perhaps this portion of the potential curve

is not affected much by cylindrical geometry.

In the plateau region the average net charge density over several

wave lengths is affected both by the amplitude of the wave and by the

proximity of a potential envelope across the maxima to the monotonic neutral

plasma curve. Perhaps the monotonic neutral plasma curve can be found and

used as a reference curve for the wave-type solutions.
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iv. c_ow_uslo_s_ _EC_mDA_0_S

This report has presented the entire scope of work performed on planar,

cylindrical and spherical diodes during the contracting period. A number

of conclusions can be reporte_:

lo Methods were developed for finding potential distributions

and current-voltage characteristics for planar, cylindrical

and spherical diodes.

2. Results were demonstrated for planar diodes with arbitrarily large

plasma densities and bias potentials.

. Solutions were found for cylindrical and spherical diodes up

to a density such that the reference Debye length was 1/40 of

the electrode spacing, and to bias potentials of 5 kT/e. There

is no apparent reason why the range of applicability should be

limited, except for computer running time and possibly also some

adaptation of equations for large bias potentials in the same

manner as was used for the planar case.

Neutral plasmas, at leas_ as described by the mathematical model

used in these investigations, appear to be unstable to small

potential disturbances.
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It is believed that this work has established many of the fundamental

characteristics of plasma diodes. However, problem areas that have appeared

which warrant further investigation do include the following:

a) Calculation of potential distributions with two or more extrema,

i.e. with oscillation amplitude larger than the bias potential.

b) Calculation of current-voltage curves for plasma diodes of various

geometries.

c) Applications of theory to experimental conditions of interest.

d) Consideration of two-dimensional plasma configurations.

e) Satisfactory methods of analysis for probes in high-density plasmas.
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APPENDIX A

PLANAR DIODE COMPUTER PROGRAM
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APPtlW-DIXA: Pl_arDiodeComputerI_rogram
_PLANDIOD

DIMENSION POTL(8,1OO1),ARRAY(2,501),MONTH(3),XJ(8),XJI(8),LABEL(3,

12),CNS(6,3),CC(IO),CHG2(50),PHIM2(50),XJ2(8}
DIMENSION XJ3(B),PHI(6),PHIX(6),PHIMAX(6)

COMMON POTL,ARRAY,DEBY2,CONST,CNS,POT,PHIM,ETA,CC,TEMP

I ,LANE6,DPHIXX,PHIMAX,LANE

DIMENSION LABELI(4,2),LABEL2(3,2),LABEL3(2),BITS(1)

TABLE LABEL(36H / (R/LAMBDA)SQ )

TABLE LABELi(48HEMITTING CYLINDER RADIUS ELECTRODE SPACING}

TABLE LABEL2(36H COLLECTOR RADIUS ELECTRODE SPACING )

TABLE LABEL3(12H POSIT NEGAT)

TABLE BITS (0-377777777777)
C KEND = 1 FOR MONOTONIC SITUATION OR ION RICH SITUATION AT COLLECTOR
C KEND = 2 FOR POTENTIAL MINIMUM SITUATION
C KEND = 3 DURING PRINTOUT BEFORE NEXT ITERATION FOR MONOTONIC SITUATION
C KEND = 4 DURING PRINTOUT BEFORE NEXT ITERATION FOR POTENTIAL MINIMUM
C SITUATION

C KEND = 5 OR 6 FOR PRINTOUT AFTER ERROR CALL
C KEND = 7 FOR OSCILLATION SITUATION

C KEND=8 FOR POTENTIAL MAXIMUM SOLUTION

IF(SENSE LIGHT I)34,27

34 KEND=XMINOF(6,KEND+4)

J=J+2
GOTO 166

27 XLOOP=15°
TOL=I°E-4
TOL]=],E-7
ETA=I.

JBELOW=O
JABOVE=O

KEND=I

LANE6=I

LBL2=2
LOOP = 15
LOOP1 :0
LPRINT=I
KPRINT=2

CUREL=].

PHIMAX=O°

PHIPRM = BITS

DEBYY = I.

33 READ DIP DEBYE,MONTH,LPRINT,POT,PHIPRM,ETA,

1 XLOOP,KPRINT,KEND,PHIM,TOLI,DEBYY,LOOP

IF(SENSE LIGHT 1)33,28
28 LANE4 = 1

LANE 5 = I

CC(1} = 1.
CALL ERF(SQRTF(MAXlF(O.,POT)),CC(3}}

CC(3) : CC(3) + 1.
IF(DEBYY -1. )152,151,152

15] DEBY3 = DEBYE
DEBY2 = DEBYE **2
GOTO 153

152 DEBYE = 1.

DEBY2 = 1.
DEBY3 = DEBYY

153 IF(POT-20.)37,38,38
37 CURION=EXPF(-POT)/CC(3)

GOTO 39

38 CURION=O.

*XJ1 IS QIRE VECTOR FOR ITERATION ON PHIPRM
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39 IF(KFND-2) ]50,482,150
150 XJI:0.

PHIM : MINIF(O.,I.0OI*POT}
IF(PHIM)328,155,155

155 CHG2(1):ETA-I.
NCOUNT=i

*LOOP TO FIND INFLECTION POINT OF POTENTIAL CURVE, EFN 58 TO EFN 12
*XJ IS QIRE VECTORFOR LOCATING INFLECTION POINT

58 Xj=l.
XJ(4)=O°

XJ(8)=O.

PHI=O.
64 LANE = ]

CALL CHARGE(ETA,POT,PHIM,POT,CHGELC,CHGION,CHGNET,-I-)

IF CHGNET)I,I,2

2 XJ 2)=POT
XJ 6)=CHGNET

IFICHG2(NCOUNT))3,4_4
3 XJ 3)=0.

XJ 7)=CHG2(NCOUNT)
PH =°l'POT
GO TO 11
DPHI=°O01
CHGI=CHG2(NCOUNT)

5 PHI:PHI+DPHI

8 CALL CHARGE(ETA,POT,PHIM,PHI,CHGELC,CHGION,CHG3,-I.)

IF(CHG3-CHGI)6,9,9

6 DPHI=MINIF(2.*DPHI,.I*POT)

CHGI=CHG3
PHI:PHI+DPHI

IF(PHI-POT)8,797
7 WRITE(3,1OO3)LABEL3(KEND),POT,ETA,DEBYE,DEBYY.PHIM

GO TO (108,111,112,112,112,112,34).KEND
108 PHI=Oo

GO TO 65
111 PHI = PHIM

XJ2=I°
XJ2(2)=PHIM
XJ2(6)=POT-PHIM
LANE2=1
GOTO 66

112 CALL ERROR
9 IF(CHG1)IO,?,7

10 XJ(3)=PHI-DPHI

XJ(7)=CHGI

GO TO 12
11 CALL CHARGE(ETA,POT,PHIM,PHI,CHGELC,CHGION,CHG3,-1.)

12 CALL QIRE(PHI,CHG3 ,O.,O.,O.,O.,TOL1,XLOOP,XJ'GO)

IF (GO-6HGOBACK )13 ,11,13

13 GO TO (65,66,324,324,324,324,185),KEND
*PHIPRM IS POTENTIAL GRADIENT AT NEUTRAL PLASMA INFLECTION POINT

C PHIPRM IS ITERATION VARIABLE FOR MONOTONIC SITUATION

65 IF(PHIPRM-BITS)14,149,14

149 PHIPRM:I./DEBYE
14 LANE=3

CALL PHIDRV(M,PHI,PHIPRM,-I.,O.)

*LOOP FOR INTEGRATION
C OF THE POSITIVE SLOPE STARTS HERE FOR THE MONOTONIC CASE

LANE6=LANE6

LANFI=I
DO 4] I=I,8008
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POTL(I)=O.
POTL(I,1):O.

POTL(2,1)=O.
POTL(3,1):O.
POTL(4,1)=ETA
POTL(5,1)=I.
POTL(6,I)=ETA-I.
POTL(7,1)=DEBY2*POTL(6,[)
J=l
LANE = 1
CALL PHIDRV(MgPOTL(3,1),POTL(8,1)9-I.,O°}
IF(POTL(8,1))I61,160,139

CALL ERROR

CNS(2,2)=DEBY2*(ETA-I-)

CNS(3,2)=DEBY2*ETA*CC(2)*SORTF(2.*(ETA-1.))

DDX = MINIF(.25/DEBYE,°OI)

POTL(8,1) = PHIPRM

FACT2 = DDX*CNS(2,2}
FACT3 = DDX**2/2-*CNS(3,2)

POTL(8,2) = POTL(8,1)+FACT2-FACT3

POTL(8,3) = POTL(8,1)+2°*FACT2-4.*FACT3

FACT2 = FACT2*DDX/2.

FACT 3 = FACT3*DDX/3.

POTL(3,2) = FACT2 - FACT3

POTL(3,3) = 4.*FACT2-8.*FACT3
POTL(1,2) = DDX
POTL(1,3) = 2.*DDX
CALL CHARGE(ETA,POT,PHIM,POTL(3,2),POTL(k,2),POTL(5,2),POTL(6*2)'

1 -1.)
CALL CHARGE(ETA,POT,PHIM,POTL(3,3),POTL(4,B),POTL(5,3),POTL(6,3),

1 -1.)

J : 3

POTL(7,2} = DEBY2*POTL(6,2)

POTL(7,3) = DEBY2*POTL(6,3)

IF (ABSF (POTL (7,3)/POTL (7,1)-1. )-.05 )470,470,467

IF (POTL (3,2 )-POTL (3, I )-1 .E-6 }470,470,468

DDX : DDXI2.

GOTO 469

LANE1=5

IF (PHI-PH IM) 109,109,110

DPHI=POT/I0°

PHITST=POT

LANEI = XMAXOF('_,LANE]}

LANE = 1

GO TO 15
PHITST=PHI
DPHI = MAXlF(POTL(39J),PHI,.1)/iO.

STATMENTS 15-21 INVOLVE INTEGRATION IN THE POSITIVE

15 IF(PHITST-POTL(3,J)- DPHI )16,16_17

16 DPOT:(PHITST-POT

LANEI:LANEI+I
POTL(3,J+2)=PHIT

POTL(3,J+I)=(POT

GO TO 491

17 DPOT=MAXlF(I°E-6
20 POTL(3,J+I)=POTL

L(3,J})/2.

ST
L(3,J+2)+POTL(3,J))/2.

,MINIF(POTL(8,J)/DEBYE,DPHI/2.))
(3,J)+DPOT

POTL(3,J+2):POTL(3,J+I)+DPOT

LANEI:I NORMALLY BETWEEN EMITTER OR POTENTIAL

MINIMUM AND INFLECTION POINT

LANEI=2 FOR LAST INTERVAL BEFORE INFLECTION

POINT
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|
C LANE1=3 NORMALLY AFTER INFLECTION POINT ,w
C LANE1=4 FOR LAST INTERVAL BEFORE COLLECTOR

49] LANE=I ICALL PHIDRV(M,POTL(3,J+I),POTL(8,J+I),-1.,O.)

IF(POTLIS,J+1))85,164,135

135 CALL PHIDRV(M,POTL(3,J+2),POTL(8,J+2),-1.,O.)

IF(POTL(8,J+2))85,164,134 I

164 LANE 5 = 2
IF(POTL(8,J)_2/CONST+1.E-7)42,42,165

C THIS SEQUENCE IS INTENDED TO GET US PAST AN INFLECTION POINT I

C FOR BOTH MONOTONIC AND POTENTIAL MINIMUM CASES I

C IF PHIDRV IS UNABLE TO CALCULATE NON-ZERO PHIPRIME

165 POTL(3,J+I) = PHI I

POTL(3,J+2) = 2. _ POTL(3,J+I) - POTL (39J) I
POTL(8,J+2) = POTL(89J)

POTL(8,J+I) = O. i

POTL(1,J+2) = POTL(I'J)+2"_(POTL(S'J+2)-POTL(3'J))/POTL(8'J) I
J = J+2

GOTO 48

134 IF(POTL(B,J+2)/POTL(8,J)-°5142,43,43 I43 IF(POTL(8,J+2)/POTL(8,J)-2.)44,44,42

42 IF(DPOT-1.E-6)44,44,426

426 DPOT=DPOT/2, IGO TO (20,35,20,35,20,35),LANE1

35 LANEI=LANEI-1

GOTO 20

44 IF(LANE1-2)432,433,432 I
433 IF(LANE6-2)432,434,103

432 DX=(.333333/POTL(8,J)+1.333333/POTL(8,J+1)+.333333/POTL(8'J+2))_DP

10T iPOTL ( 1,3+2 ) =POTL ( 1, J ) +DX

POTL ( 1 ,J+l ) =POTL ( 1 ,J ) +DX/2 •

IF(J-999)52,52,51

51 KFND=XM I NOF (KEND+4,6) I
GOTO(24,122,24,122,24,122,34),KEND

52 3=3+2

GO TO (15,48,50,21,50,22),LANEI I

50 GOTO(148,15,412,412,412,412,412,412),LANE I
612 CALL ERROR

48 PHITST=POT MAIN m
LANE1=3 MAIN I
GO TO 20

2] J2MAX = J IIR

495 GO TO (22,36),LPRINT •
36 KENDI=KEND

KEND=KEND+2

GO TO (477,122),KEND] I

221 KEND=KEND1 E
IF (LANE6-2)22,321,22

2284 GOTO(82,83,84,84,84,84,84,411),KENDcALLERROR I
82 CALL QIRE(PHIPRM,POTL(I,J)-DEBYY,O.,9._PHIPRM,O.,-.9*PHIPRM,TOL,

1 XLOOP,XJI,GO)

C SFE SUBROUTINE PHIDRV FOR SIGNIFICANCE OF LANE6 VALUES I

GO TO(23,477,122,24,122),LANE6

2_ IF(GO-6HGOBACK)128,14,128

128 GO TO (24,122,129,129,324,324),KEND I

129 CALL ERROR I
C STATEMENTS EFN 24 TO EFN 29 PROVIDE FOR INTERPOLATION TO GET

C THE ODD VALUES OF X FOR THE MONOTONIC CASE I
WHETHER TO ADJUST DISTANCES IN PLATEAU SITUATION •C DFCIDE
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24 LANE4 = 2
477 DO 25 JJ=l,J,2

l=(JJ+l)/2
ARRAYII,I)=POTL(3,JJ)/PHIPRM

25 ARRAYI2,1)=POTL(1,JJI
If=2

14=4

DO 26 11=2,1

JJ=2_II-2

IF(JJ-JBELOW)465,31,31

31 IF(JJ-JABOVE)45,465,465

465 CALL LSP(ARRAY(1,1I-2),II,I4,POTL(3,JJ)/PHIPRM,POTLI1,JJ),DUMMY)
45 IF(II+I-I)26,40,40

40 14=3

26 II=I

DO 29 II=l,J

29 POTL(2,1I)=POTL(I,II)*DEBYE

217 GOTO 166
437 DX = DEBYY-POTL(1,J)

STATEMENTS EFN 434 TO EFN 461 RECOGNIZE THE PLATEAU SITUATION
AND JUMP TO THE COLLECTOR, WORKING BACK FROM THERE BEFORE USING
THE SINH FORMULATION FOR THE PLATEAU
30 IF(POTL(8,1)-1.lE-6)438,438,437

438 IF(KEND-2)166_439,444
439 CALL ERROR
440 KEND=KEND1

GO TO 166
434 JBELOW=J

JAROVE=J+4

J2MAX=JABOVE+2

POTL(B,J2MAX)=POT

POTL(1,J2MAX)=I.

CALL PHIDRV(M,POTL(3,J2MAXi,POTL(8,J2MAX),-1.,O.)

DPOT=(POT-PHI)/20.
435 POTL(3,JABOVE+I)=POTL(B,JABOVE+2)-DPOT

POTL(3,JABOVE):POTLIJ,JABOVE+I)-DPOT

CALL PHIDRV(M,POTL(3,JABOVE),POTL(8,JABOVE),-1.,O.)

IF(POTL(8,JABOVE)/POTL(8,JABOVE+2)-.5}436,442,442

436 IF(DPOT-1.E-6)443,443,441
44] DPOT=DPOT/2°

GO TO 435

443 IF(POTL(3
442 CALL PHID

DX=(.3333
1 +.333

481
444

445

446

44"7

448

44.9

45O

,JABOVE)-PHI*2.+POTL(3,JBELOW))450,450,442

RV(M,POTL(3,JABOVE+I),POTL(8,JABOVE+I),-1.*O.)

33/POTL(8,JABOVE)+I.333333/POTL(8,JABOVF+])

333/POTL(8,JABOVE+2})*DPOT

POTL(1,JABOVE)=POTL(1,JABOVE+2)-DX

POTL(1,JABOVE+I)=POTL(1,JABOVE+2)-DX/2.

GOTO (452,481),LANE1
IF(J2MAX-999)447_447_444
KEND=KEND+4
DO 446 I=19J2MAX
POTL(2,I)=POTL(1,I)*DEBYE
GO TO 314
JJJ=J2MAX*8
J2MAX=J2MAX+2
JJABV=(JABOVE-1)*8+I
POTL(JJJ+16)=POTL(JJJ)
IF(JJJ-JJABV)435,435,449
JJJ=JJ3-1
GO TO 448
GO TO(442,451),LANE1
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C

451

452

162

492

493

496

45!

454

455

456

45"I

458

459

460

461

166

314

31T

1

2JBEL

POTL

1

2JABV

IF(N

DPOT = (POTL(3,JABOVE+2)-2._PHI+POTL(3'JBELOW))/2.
LANE ] = 1

GO TO 435

DPHIX2=DPHIXX
DX={POTL(1,JABOVE)-POTL(1,JBELOW))/2.

IF(DX)492,492,496

DO 493 I=JABOVE,J2MAX

POTL(1,I)=POTL(1,I)-DX_2•

J=J2MAX

GO TO 495

POTL(I,JBELOW+2)=POTL(I,JBELOW)+DX

TEMPI=SQRTF(CNS{2,1))

TEMP2=EXPF(TEMPI*DX)

POTL(8,JBELOW+2)=(PHI-POTL(B,JBELOW))_TEMPI*2./{TEMP2-1•/TEMP2)

DPHIXX=POTL(8,JBELOW+2)**2

IF(DPHIXX/DPHIX2-2•)453,453,454

IF(DPHIX2/DPHIXX-2.)460,460,454

EFN 454-459 CORRECT SLOPES WHICH MAY RE

CHANGED BY A NFW INFLECTION POINT SLOPE

DELT=(DPHIXX-DPHIX2)/2•

JBEL=JBELOW

JABV=JABOVE

DDPHI=DELT/POTL(8,JBEL)_*2

IF(ABSF(DDPHI)-•OI}457,457,456

POTL(8,JBEL)=POTL(8,JBEL)*(I.+DDPHI)

POTL{8,JABV)=POTL(8,JABV)*{I.+DELT/POTL(8,JABV)**2)

JARV=JAPV+I

JREL=JRFL-I

GO TO 455

N=(JBELOW-JBEL)/2

JBEL=JBELOW-2_N

JARV=JAROVE+2_N
POTL 1,JBEL)=POTL(1,JBEL-2)+(POTL(3,JBEL)-POTL(3,JBEL-2))*

•166667/POTL(8,JBEL-2)+•666667/POTL(8,JBEL-1)+•166667/POTL(8,

)

1,JABV)=POTL(1,JABV+2)-(POTL(3'JABV+2)-POTL(3'JABV) )*
• 166667/POTL ( 8, JABV+2 )+.666667/POTL ( 8, JABV+I ) +. 166667/POTL { 8,

)

452,452,459

N=N-I

GO TO 458

DX=DX/2.

POTL(1,JBELOW+I)=POTL(1,JBELOW)+DX

POTL(1,JABOVE-1)=POTL(1,JABOVE)-DX
DPOTL=POTL(8,JBELOW+2)/TEMPI*(EXPF(TEMPI*DX)-I./EXPF(TEMP1 *Dx))/2.

POTL(3,JBELOW+2)=PHI
POTL(3,JBELOW+I)=PHI-DPOTL

POTL(3,JBELOW+3)=PHI+DPOTL

JBEL=JBELOW+I

JABV=JABOVE-1

DO 46] i=JREL,JABV
CALL PHIDRV(M,POTL(3,I),POTL(8,I),-1.,O.)

PHIPRM=(POTL{3,JABOVE)-POTL{3,JBELOW))/DX

LANE6=1
J = J2MAX
GO TO(24,122,166,166,166,166,166,166),KEND

J2MAX=J

LBL=2

CUREL = CC(6)/CC( 1)
WRITE OUTPUT TAPE 3,1000,(MONTH{I),I=I,3),{LABELI(I,LBL2),I=I'4)'

1DEBY3, ETA,(LABEL( I'LBL)'I=I'3)'POT'

I
I
I

I
I
I
I

I

I
I

I

I

I

I

I

I
I

I
I
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I
I

I
I

I
I

I
I

I
I

I
I

I

I
I
I

!
I

2CUREL,CURION,(LABEL(I,LBL),I:2,3}
GOTO(341,318),KPRINT

B41 IF(J2MAX-411318,318,BI9

318 N]=I
N2:J2MAX

LSKIP=I

LGO:]

GO T0320

319 LSKIP=J2MAX/40+I

NI:I
N2=J2MAX

LGO=2

320 WRITE OUTPUT TAPE B,IOOI,({POTL(I,J),I=I,8),J=N1,N2,LSKIP)

GOTO{323,322),LGO

_2P NI=J2MAX

N2=J2MAX

LSKIP=I

LGO=I
GO T0320

323 IF(SENSE SWITCH 4)B24,327

327 GO TO (328,27,221,221,324,324,185),KEND

328 KEND=2

LANE6 = 1

LANE2=]

GO TO (157,27),LANE4

ITERATION FOR POTENTIAL MINIMUM SITUATION STARTS HERE

PHIM IS ITERATION VARIABLE FOR POTENTIAL MINIMUM SITUATION

482 XJ1 = O.
NCOUNT = 1

DPHIM=-MINIF(°OO5,MAXlF(°OOO5,°I*ABSF(POT)) )

GOTO 483

157 = O.

= POTL(I,J)-POTL(I,I)-DEBYY

481

158

175

63

6O

61

147

XJ](3)

XJl(7)

ERR] =

XJl(1)

XJl(2)

XJl(6) =

XJl(4) :

XJl(8) =

NCOUNT=2
DPHIM=-MI

PHIM2(2):

PHIM2(1)

LANE7=1

LANE = 4

DO 158 I

XJ2(1) =
XJ = 1.

XJ(4)=O.
XJ(8)=O.

XJl(7)

= 1,

=0.

O.

O.

O.

N1F(.OO5,MAX1F(.OOOS,.I*ABSF(POT)) )

PHIM+DPHIM

= PHIM

: 1,8

O.

CHG2(1):ETA-1.

XK4 = DPHIM

PHIM = PHIM2(NCOUNT)

PHI=PHIM

CALL ERF(SQRTF(-PHIM),CC(1))
CC(1) = CC(1) + I.

CALL CHARGE(ETA,POT,PHIM,PHIM,POTL(4,2),POTL(5,2),CHG2(NCOUNT),O.)

IF(CHG2(NCOUNT))60,60,64

[F(NCOUNT-2)147,62,61

IF(CHG2(NCOUNT)-CHG2(NCOUNT-I))I47,147,62

WRITE (3,1002)POT,ETA,DERYE,(PHIM2(1),CHG2(1),I=I,NCOUNT)
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C

C

C

C

C

C

GO TO 327
62 PHIM2INCOUNT+I)=PHIM2(NCOUNT)+DPHIM

PHIM=PHIM2(NCOUNT+I)
DPHIM = DPHIM_2o

CALL ERF(SQRTF(-PHIM),CC(1))

CC(1) = CC(]) + 1°
NCOUNT=NCOUNT+I

GO TO 63

66 DX=MINIF(.25/DEBYE,.OO2_DEBYY)

DPHI=MAXIF((PHI-PHIM)/IOo,.02)

PHITST=PHI

DDX=DX

DO 140 I=1498008

140 POTLIII=O°

J2=2

J=-3

J2MIN=I

LANE = 4

CALL PHIDRV(M,PHI,DUMMY,-1.,CHG2(NCOUNT))

LANE6=LANE6

C THIS IS SUPPOSED TO BE CHARGE DENSITY AT PHIM

171 IF(PHI-PH IM) 170_ 86,85

170 CALL FRROR

85 PHIMX=PHI M2 {NCOUNT )

THIS IS AN OVERRIDE TEST, DESIGNED TO LOCATED PHIM GIVING ZERO PHIPRIME

AT INFLECTION POINT AND TO AVOID TANGLING WITH SPURIOUS INFLECTION

POINTS, INDICATED BY DPHIXX = 0 AT NON-INFLECTION POINT

CALL QIRE(PHIMX,DPHIXX,O.,O.,O.,O.,1.E-IO,XLOOP,XJ2,GOONE)

IF{SENSE LIGHT 1)173,414

414 I F (GOONE-6HGOBACK) 173,172,173

172 IF(DPHIXX)174_86,86

174 PHIM2 (NCOUNT)=PH IMX

GO TO 175

17_ LANE7=2

DPHIXX = MAXIF(DPHIXX,O.)

WITH NO INFLECTION POINT, OR POSITIVE SLOPE AT INFLECTION POINT,

TRY CALCULATING POTENTIAL DISTRIBUTION

EFN 86 TO EFN 116 APPLY TO IMMEDIATE NEIGHBORHOOD OF POTENTIAL MINIMUM

86 POTL(3,J2)=PHIM

DUMMY =DUMMY*-X-2

POTL(6,J2) = CHG2(NCOUNT)

POTL(7,J2} = POTL(6,J2)_-DEBY2

POTL (8,J2)=0°

POTL ( 1 ,J2 )=0.

71 FACT2=CNS (2,2)'_-DDX

FACT22=FACT2*DDX/2 °

FACT-3=CNS (3,2) _DDX-X-_2/2 °

FACT-3-3=FACT3_DDX/3 °

POTL 1,1)=POTL(1,2)-DX

POTL 1,J) =POTL(1,J-1)+DX

POTL _3,1)=PHIM+FAET22+FACT33

POTL -39J)=PHIM+FACT22-FACT33

POTL 8,1)=-FACT2-FACT3

POTL 8,J) =FACT2-FACT3
LANE = 2

CALL CHARGE(ETA,POT,PHIM,POTL(3,1),POTL(4,1),POTL(5,1) ,POTL(6*I),I

1.)

1

CALL CHARGE(ETA,POT,PHIM,POTL(3,J),POTL(4,J),POTL(5,J),POTL{6tJ),-

1.)

POTL(7,I)=POTL(6,I)_DEBY2

POTL(7,J)=POTL(6,J)_DEBY2
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I

I
I

!
I

I
I

I
I

I
I

I
I

I

I
I
I
I

I

471
472

1+73

115

116

C 11/+
C 6"7
C
C
C 68
C 69
C
C
C 7O
C
C
C

IF(ABSF(POTL(7,1)/POTL(7_J2)-1.)-.05}47394719471
IF(ABSF(POTL(391}-POTL(3_J2))-l.E-6}473_473,472

DDX = DDX/2,

GOTO 71

PHIX=-PHIM

CI:-.5
C2:1,
LANE=2
LANEX=2
IF(POTL(3,1}} 72,113,113
XJ (2) =POTL ( I , 1 )
XJ ( 6 ) :POTL ( 3,1 )
XJ ( 3 ) =POTL ( ] ,2 )
XJ(7)=POTL(3_2)
XJ(4)=O.

XJ(8):O.

XJ(1)=I.

POTL(I,1)=POTL(1,2)-DX*POTL(3,2)/(POTL(3,2)-POTL(3,1))

D3X=POTL(1,2)-POTL(1,1)

FACT2=CNS(292)*D3X

FACT22=FACT2*D3X/2.

FACT3=CNS(3,2)*D3X**2/2.

FACT33:FACT3*D3X/3.

POTL(3,1)=PHIM+FACT22+FACT33

POTL(8,1)= -FACT2-FACT3

CALL QIRE(POTL(1,1),POTL(3,1),O.,O.,O.,O°,TOL1,XLOOPtXJ,GO)

IF(GO-6HGOBACK)116_115,116

CALL CHARGE(ETA,POT,PHIM,POTL(3,1),POTL(4,1),POTL(5,1)_POTL(6_I)_I

1.)

POTL(7,1}:POTL(6,11*DEBY2

LANEI:I
JJMAX:J
GOTO 139
IF(FACT33-FACT22/20.)67,67,72

JJ:J

J2=J2+l

J=J+2

DO 69 I=1,8

POTL(I,JJ+II:POTL(IsJJ)

JJ:JJ-I
IF(JJ)70,70,68
DDX=DDX+DX
GO TO 71

EFN 72 TO EFN 121 APPLY TO NEGATIVE SLOPE CALCULATION FOR POTENTIAL

MINIMUM, POSITIVE SLOPE FOR ION-RICH SOLUTION

72 JJ:J
J2=J2+2
J2MIN=J2_IN+2
J:J+2

73 DO 74 I=1,8
74 POTL(I,JJ+2)=POTL(I,JJ)

JJ=JJ-1
IF(JJ)75,75973

75 DPOTI=PHIX/IO,
DPOT2=CI*POTL(3_3)
IF(DPOT1-DPOT2)80,79,79

79 DPOT=DPOT2
LANEI=2
GO TO 77

80 DPOT=DPOT1
LANEI=I
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76

466

77 POTL(3,2)=POTL(3,3)+DPOT * C2
POTL(3,1)=POTL(3,2)+DPOT * C2

CALL PHIDRV(M,POTL(3,1) ,POTL(8,1) ,C2,0.)

I F(POTL(8,1 )/POTL (8,3)-2.)78,78,76

I F (DPOT-1 .E-6) 78,78,466

DPOT=DPOT/2.

LANE1=1

GO TO 77

78 CALL PHIDRV(M,POTL (3,2 ) ,POTL (8,2) 9C2,0. )

DDX=(.333333/POTL(8,1)+l.333333/POTL(8,2)+.333333/POTL(893) )

1 *DPOT

POTL(1,1)=POTLI1,3)+DDX * C2
POTL(1,2)=POTL(1,3)+DDX/2. * C2

GO TO (72,81),LANE1

81 LANE1 =1
FACT= (POTL( 1 ,J2M I N)-POTL (1,J2MI N-2 ))/(POTL(3,J2MIN-2)-POTL(3,j2MIN

1))

ARRAY ( 1,1 ) =POTL (3 ,J2MI N+I )*FACT

ARRAY (2,1)=POTL ( 1 ,J2MIN+I )

JJMAX=3

333=2
JJJJ=J2MIN

118 ARRAY ( 1,J J J) =POTL (3, JJJJ)*FACT

ARRAY (2,JJJ)=POTL(],JJJJ)

IF(J J J J-1 )119,119,117

11"7 JJJJ=JJJJ-2

JJJ=JJJ+l

GO TO 118

119 11=1

14=3

120 CALL LSP(ARRAY(I,JJJ-2),II,14,POTL(3,JJJJ+I)*FACT,POTL(I,JJJJ+I),D

IUMM )

IF(JJjJ+2-J2MIN)I?I ,177,177

121 14=4
JJJJ=JJJJ+2

JJJ=JJJ-1
GO TO 120

NOW GO TO POSITIVE SLOPE CALCULATION

177 I F (LANE-5)479,178,178

479 I F (PH I-PH IM) 478,478,480

478 PHITST = POT

DPHI = (POT-PHIM)/10.

LANE I = 3

GOTO 15

480 PHITST = PHI

LANE1 = ]

DPHI = (PHI-PHIM) /10.

GOTO 15

178 I F (POT-PH IMAX) 182,179,184
THIS IS A LOOP FOR ION-RICH CHARGE EVERYWHERE WITH

POTENTIAL MAXIMUM

ERRI=POTL (1,32)-POTL ( 1 , 1 )-DEBYY

CALL QIRE (PHIPRM,ERR1

1 -POTL(1,1) ) ,0. , O. ,TOL,XLOOP,X31 ,GOTWO)

IF (PHIPRM)182,182,180
180 I F (GOTWO-6HGOBACK) 183,19,183

C

C

179

181

J=32
GO TO 166

XJS(1 )=1.

XJS(6)=O.

XJ3(8)=O. -180-

NO

,O.,POTI(POTL(1,J2)

I

I
I
I

I

I
I
I

I
I

I

I

I

I

I
I

I

I

I



I

t 420

I

I

I 421

422

!1

I 42_3

I 428

I 185

I 429

I
C

43O

43]

C PORTION80F POTENTIAL
I 184 LANE =

197 DPOT = -.005

GOTO 193

I 182
191

497

I 193

XJ3(7)=POTL(6,J2)
XJ3(2)=O.
XJ3(3)=PHIMAX

XJ3(4)=O.
PHIMX2=PHIMAX+I.

CALL ERF(SQRTF(PHIMX2),CC(3})

CC(3) = CC(3) + I.

PHIMX3 = PHIMAX

PHIMAX = PHIMX2

CALL CHARGE(ETA,POT,Oo,PHIMX2,CHGELC,CHGION,CHGNET,-1.)

DUMM=DUMM

PHIMAX = PHIMX3

CALL OIRE(PHIMX2,CHGNET,O._O.,O.,PHIMX2-PHIMAX,TOL,XLOOP+5°9

I XJ3,GOFOUR)

IF(GOFOUR-6HGOBACK)422,421t422

IF(PHIMX2-I.E6)420_420,422

XJI(3)=PHIMAX

XJI(7)=ERR5

XJI(2)=O,

XJt(4)=O.

XJl(6)=O.

XJl(8)=O.

CALL OIRE(PHIMAX,ERR5,0°,O°,O.,(PHIM×2-PHIMAX)/2°,TOL,XLOOPgXJ1,GO

ITWO)

IF(GOTWO-6HGOBACK)166,428,166

CALL ERF{SQRTFIPHIMAX),CC(3))

CC(3) = CC(3) + I.

GOTO 19

PHIMXl = PHIMAX+PHI/20°

LOOP1 = LOOPI+I

IF(PHIMXI-PHI)429,430,430

PHIMAX = PHIMX]

GOTO 18

IF(LOOP1-LOOP}431,431,27

PHIMAX = (PHIMAX+PHI)/2.

GOTO 18

EFN 184-400 CALCULATE NEGATIVE SLOPE

MAXIMUM SOLUTION

I 490
186

187

I 188

1

I
192

I 425

194

I

LANE=7

IF(PHIMAX-POT)197,]97,497

DPOT=-MINIF((POTL(3,J)-POT)/2.,°O05)

POTL(3,J+I)=POTL(3,J)+DPOT

POTL(3,J+2)=POTL(3,J+I}+DPOT

IF(POTL(3,J+2))425,490,490

CALL PHIDRV(LDUM,POTL(3,J+2},POTL(8,J+2),-1.,O.)

GO TO(186,425,425),LDUM

IF(POTL(8,J+2)/POTL(8,J)-2.}187,187,192

IF(POTL(8,J+2)/POTL(8,J)-.5)192,188,188

CALL PHIDRV(LDUM,POTL(3,J+I),POTL(8,J+I),-I°,O.)

DX=(.333333/POTL(89J)+1.666667/POTL(8,J+1)+.333333/POTL(8,J+2))

*DPOT

POTL(I_J+I)=POTL(I,J)+DX/2.
POTL(19J+2)=POTL(I,J)+DX

GO TO 194

IF(DPOT+1°E-6)425,188,188

DPOT = DPOT/2.

GOTO 193

J = J+2
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195

IF(POTL(8,J)-(POTL(3,J)-POTL(3,J2))/(POTL(1,J)-POTL(1,J2))
1 /100o)197,195,195

J = J+2
D3PHI = (POTL(79J-2)-POTL(7,J-4))/(POTL(1,J-2)-POTL(1,J-4))

DX=(SORTF(POTL(7,J-2)_2-2o_POTL(8_J-2)*D3PHI)-POTL(7,J-2))/D3PHI

POTL(1,J)=POTL(1,J-2)+DX
POTL(3,J}=POTL(3,J-2)+POTL(8,J-2)_DX+POTL(7,J-2)*DX*_2/2o

l +D3PHI_DX_3/6o
POTL(3,J-1)=POTL(3,J-2)+POTL(8,J-2)_DX/2°+POTL(7,J-2)_DX**2/8.

1 +D3PHI_DX_3/48.

CALL CHARGE(ETA,POT,O°,POTL(3,J-1),POTL(4,J-1),POTL(5,J-1),

1 POTL(6,J-1)_-I.)

CALL CHARGE(ETA,POT,O.,POTL(3,J),POTL(4,J),POTL(5,J),POTL(6,J),

1 -1.)

POTL(7,J-1) = POTL(6,J-1)*DEBY2

POTL(T,J ) = POTL(7,J-1)_DEBY2

FACT=(POTL(1,J2+3)-POTL(1,J2))/(POTL(3,J2)-POTL(3,J2+3))

ARRAY(l,1) = POTL(3,J2)*FACT

ARRAY(2,1) = POTL(],J2)

JJJ = 2

JJJJ = J2+1

JJMAX = J
ARRAY(1,JJJ) = POTL(3,JJJJ)_FACT

ARRAY(29JJJ) = POTL(1,JJJJ)

IF(JJJJ-JJMAX)402,403,403

JJJ = JJJ+l

JJJJ = JJJJ+2

GOTO 401

II = 1

14 = 3

CALL LSP(ARRAY(1,JJJ-2),II,I4,POTL(3,JJJJ-1)_FACT,POTL(1,JJJJ-1)_

400

401

402

40"4

404

1

405

406

407

4O8

409

410

512

499

498

50O

5O]

502

5O5

DUMM)

IF(JJJJ-1-J2)406,406,405
14 = 4

JJJJ = JJJJ-2
JJJ = JJJ-1

GOTO 404

IF(LANE-7)407,410,408

CALL ERROR

GOTO 83

DO 409 I = l,J

POTL(2,I) = POTL(1,I)*DEBYE

GOTO 166

DO 512 I=l,J

POTL(2,1)=POTL(I,I)_DEBYE

WAVE=POTL(I,J)-POTL(1,J2)

DIST=POTL(1,J)

LDIR=-I

IF(DIST-DEBYY)498,502,502

IF(DIST+NAVE-DEBYY)5OO,501,501

DIST=DIST+2,*WAVE

GO TO 499

LDIR=I

DIST IS THE DISTANCE

THE MINIMUM THAT IS

COLLECTOR

DELTX=DIST-POTL(1,J)

DELTXX=DELTX*DEBYE

JJJJ:J

IF(LDIR)505,508,508

JJl=J2-1

FROM THE EMITTER OF

CLOSEST TO THE

-182-

I
I

I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I



I

I
I
I

I
I

I
I

I

I
I
I

I
I

I
I

I
I

I

C
C
C

506

507

508
509

510

511
1

411
413

83

144

92
87

133
145

138

136

89

107

88

JJl=JJl+l
J=J+l
POTL (1,J) =POTL (1,J J1 )+DELTX
POTL (2 ,J) =POTL (2,J J1 )+DELTXX
DO 507 I=3,8
POTL (l,J) :POTL (I ,JJl )

IF(POTL(1,J )-DEBYY) 506,511,511
JJl=JJJJ+l

JJl=JJl-I

J=J+l
POTL (1,J) =2o*POTL (1 ,JJJJ)-POTL ( 1,JJ1)+DELTX
POTL (2,J) =2.'_POTL (2 ,JJJJ)-POTL (2,JJ1)+DELTX
DO 510 I=3,8

POTL(I,J) =POTL (I ,JJl )

IF(POTL (1 ,J)-DEBYY) 509,5il ,511

TEST=POTL (3,J-1}+(DEBYY-POTL(1 ,J-l) )/(POTL(1,J)-

POTL(1,J-1))*(POTL(3,J)-POTL(3,J-1) )
ERRS=TEST-POT

GO TO (411,413),LPRINT

IF(X J1 )181,1819423
KENDI=8

KEND=3

GOT0166
ERR2 = POTL(1,J)-POTLII,1)-DEBYY
IF( ERR2-TOL )144,144,133

GOTO (92,24,122,24,122) ,LANE6

IF(X J2(7))87,145,145
XKK4 = PHIMX-PHIM

GOTO 138

LANE6 = 1
XKK4 = DPHIM

DPHIM - DPHIM*2.

PHIMX = PHIM

CALL QIRE(PHIMX,ERR2,0.,O.,O.,XKK4,TOL,XLOOP,XJ1,GOTWO)
IF(GOTWO-6HGOBACK) 122,136,122

NCOUNT=NCOUNT+I

PHIM2 (NCOUNT)=PHIMX

PHIM=PHIM2 (NCOUNT)

CALL ERF(SQRTF(-PHIM),CC(1))

X J=l .

XJ(4)=O.
XJ(8 )=0.

PHi--PHIM

CC(1) = CC(1) + 1.

CALL CHARGE(ETA,POT,PHIM,PHIM,CHGELC,CHGION,CHG2(NCOUNT),O.)
IF(CHG2 (NCOUNT) )88,88,64

PHIM2 (NCOUNT)= (PHIM2 (NCOUNT)+PHIM2 (NCOUNT-1 })12.
GO TO 89

STATEMENTS EFN

THE ODD VALUES OF X FOR THE POTENTIAL MINIMUM CASE
INITIAL DISTANCE ADJUSTED TO ZERO

122 FACT=(POTL(1,JJMAX+2)-POTL(1,JJMAX))/(POTL(3,JJMAX+2)
I(3,JJMAX))

ARRAY(I,I)=POTL(3,JJMAX-I)_FACT

ARRAY(1,2)=POTL(1,JJMAX-1)
JJJ=2

JJJJ=JJMAX
123 ARRAY(1,JJJ)=POTL(3,JJJJ)_FACT

ARRAY(2tJJJ)=POTL(1,JJJJ)
IF(JJJJ-J)I249125,125
JJJ=JJJ+l124

122 TO EFN 132 PROVIDE FOR INTERPOLATION TO GET

-POTL
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C

C

C

C

125

JJJJ=JJJJ+2
GO TO 123

I]=]
I4=3

I F ( JJJ-JB ELOW ) 462,463,463

I F (JJJ-JABOVE )464,464,462

126

46q

462 CALL LSP(ARRAY(1,JJJ-2),II,I4,POTL(3,JJJJ-1)_FACT,POTLI1,JJJJ-1),

1DUMM)

464 IF(JJJJ-JJMAX-2)1309127,127

t27 14=4

JJJJ=JJJJ-2

JJJ=JJJ-1

GOTO 126

130 DX=-POTL(1,1)

DO 132 II=l,J

POTL(I,II)=POTL(1,11)+DX
132 POTL(2,11)=POTL(I,III_DEBYE

GO TO 166
STATEMENTS EFN 96 TO EFN 105 ADJUST DISTANCES IN THE POTENTIAL

MINIMUM SITUATION TO MATCH THE ELECTRODE COORDINATES

103 DX=-POTL(1,1)
JJj=J

104 JJJ=JJJ-1

IF(JJJ)513_513,]05

105 POTL(lgJJJ)=POTL(1,JJJ)+DX

GO TO 104

517 GO TO (1629434,434),LANE6

STATEMENTS EFN 1 TO EFN 176 SET UP POTENTIAL MAXIMUM IF NET CHARGE

AT COLLECTOR IS NEGATIVE. FIRST TRIAL IS WITH ZERO SLOPE AT COLLECTOR

THE POSITIVE SLOPE REGION TOWARD THE COLLECTOR MAY NOT HAVE AN

INFLECTION POINT

1 LANE=5

PHI=O.

NCOUNT=I

CHG2(1)=CHGNET

PHIMAX=POT

XJI=Oo

IF(PHIPRM-BITS)I9,18,19

18 PHIPRM=O.

19 LANE=5

DO 427 I=1,8008

42T POTL(I)=O.

J2=2

J=3

J2MIN=I

DDX=MIN1F(.OO2_DEBYY,.25/DEBYE)

POTL(3932)=PHIMAX

CALL PHIDRV(M,POTL(3_2),PHIPRM,-logCHG2(NCOUNT))

POTL(8_J2)=O°

474 FACT2=CNS(2,2)*DDX

POTL(1,1) = POTL(1,2)-DDX

POTL(1,3) = POTL(1,2)+DDX

FACT22=FACT2_DDX/2.
POTL(891)=-FACT2

POTL(8,J)=FACT2
POTL(3_1)=PHIMAX+FACT22

POTL(3,J)=POTL(3,1)

LANE=6

CALL

)

LANE

CHARGE(ETA,POT,O.,POTL(3,1),POTL(4_I),POTL(5,1}_POTL(6_I)9-1°

= XMAXOF(7,KEND+I)
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CALL CHARGE(ETAgPOT_O-_POTL(3,3),POTL(4,3),POTL(5_3I,POTL(6,3),-I.
i)

POTL(7,1}=POTL(6_I)*DEBY2

POTLI7,3)=POTL{6,3)*DEBY2

IF(ABSF(POTL{7_l)/POTL(7,2)-l°}-°OS)17&,176,475

475 IF(ABSF(POTL(3,2)-POTL(3,1)I-I.E-6|I76,176,476

476 DDX = DDX/2°

GOTO 474

176 PHIX=PHIMAX

CI=.5

C2=-I.

LANEX=7

LANE=6

GO TO 72

324 CALL EXIT

]000 FORMAT

RESTORE

PLANAR DIODE POTENTIAL DISTRIBUTION ANALYSIS - CALCULATION DATE

X-I/-I/-I

SPACE

-X -A / DEBYE LENGTH :

ELECTRON DENSITY I ION DENSITY AT EMITTER =

COLLECTOR BIAS POTENTIAL

ELECTRON CURRENT

ION CURRENT

SPACE

DISTANCE DISTANCE CALCULATED ELECTRON

X PHI

/SPACING /DEBYE POTENTIAL DENSITY

X PRIME

LENGTH /EMITTER

ION

DENSITY

-A =

ION

DENSITY

/EMITTER *

ION

DENSITY

SPACE

END OF FORMAT

1001 FORMAT

-X -OPF4 -F2 -F6 -lPG3
X -G_

END OF FORMAT

100_ FORMAT
RESTORE

NO INFLECTION POINT WAS FOUND FOR

XENT WITH

POT = -F3

ETA = -F3

DEBYE = -F3

DEBYY = -F3

PHIM = -F3

END OF FORMAT

1002 FORMAT

RESTORE

-F4

-F4

-IPG4

NET CHARGE

DENSITY

PHI

DOUBLE

-A PRIME

-G3 -G3 -G3

-AIVE INITIAL POTENTIAL GRADI
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REPEAT I

END OF FORMAT

SPACE

PHIM CHG2

-F5 -F5

NO NEGATIVE VALUE OF PHIM GAVE AN ELECTRON-RICH SITUATION FOR

SPACE

POT = -F3

ETA = -F3

DEBYE = -F3



END
_-ERFI IS THE ASYMPTOTICEXPANSION FOR (1-ERF(SQRTF(X)))*EXPF(X)

SUBROUTINEERFI(ARG,RESULT,TOL)
SUM= 1 •

COUNT=I •

TERM1=1.

] T ERM2 =-COUNT/2./ARG_TERMI

I F (ARSF ( TERM2/SUM )-TOL ) 4,4,2

2 I F(ABSF (TERM2)-ABSF( TERMI ) ) 3,4,4
SUM=SUM+TERM2

TERMI=TERM2

COUNT=COUNT+2.

GOTO 1

4 RESULT=O • 5641875/SQRTF (ARG 1_SUM

RETURN

"X-ERF O0

SUBROUTINE ERF(X,Y1

DIMENSION XSC819VERX (8) 9DERIV{8 )

TABLE XS(O.O,O.5,1.0,1.5,2.0,2.5,3.0,3.5)

TABLE VERX(,,00000000,,,520499879.84270079,o96610514,o99532226,

1 ° 99959304 9 o99997790, ,99999925 )
TABLE DERIV(],I2837919o87878257,,41510749,,II893028,

I- 02066698 9 •00217828 , o00013925, ° 000005"_91

IF (X)IO_II,12

1.1 Y=O°O

GO TO 100

10 X=ABSFCX/

S IGN=-I.

GO TO 13

12 SIGN=I.

13 IF (XS(1)-X)16,11,99

16 DO 19 I=298
IF {XS(1)=X) 19,20,21

19 CONTINUE

14 IF (SIGN)18999,]7

17 Y=I®

GO TO 100

] 8 Y=-I •

GO TO I00

20 IF (SIGN)22,99,23

22 Y=-VERX(I)

GO TO 100

2B Y=VERX(I

GO TO Ino

21 HI=X-XS(I-I)

H2=X-XS(I )
IF ( H1-ABSF (H2) ) 24,24,25

24 H=H1

I=I-l

GO TO 26

25 H=H2

26 UX=XS(I)

UXU=UX*_-2

HSQ=H_2

Y=VERX(1)+DERIV( I I_(H+HSQ_(-2°_UXI/2o+H*

] HSQ_- (4. _-UXU-2 o )/6. +HSQ_-_2. _-l-8. _-UXU _-UX

2+] 2.*UX _/ 24. +HSQ_-_2 •_-H_-(16 °_-UXLI_-_-2°-48 •

3-x-UXU+12.) /120.)
IF (SIGN) 27,99,]00

99 CALL ERROR

27 Y=-Y
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1

CLANE = 1

CLANE = 2

CLANE = 3

CLANE = 4
CLANE = 5

CLANE = 6

CLANE = 7

CLANE = 8
C

C

C

C

C

C

C
CC

C

C
C

C

C

C

C

C

C

100 RETURN
END

*PHIDRV

SUBROUTINE PHIDRV(LDUMMY,PHI,DPH!,SIGN,CHG}

DIMENSION POTL(8,IOOI),ARRAY(2,501),CNS(6,3),CC(]O)
1 _PHIMAX(6},PHI(6)_PHIMIN(6)

COMMON POTL_ARRAYgDE_Y2_CONST_CNS,POT,PHIM_ETA
,CC_TEMP,LANE6,DPHIXX,PHIMAX,LANE

NORMALLY FOR MONOTONIC SOLUTIONS

NORMALLY FOR NEGATIVE SLOPE OF POTENTIAL MINIMUM SOLUTIONS
TO SET UP CONSTANTS FOR MONOTONIC SOLUTIONS

TO SET UP CONSTANTS FOR POTENTIAL MINIMUM SOLUTIONS
TO SET UP CONSTANTS FOR POTENTIAL MAXIMUM SOLUTIONS

ON POSITIVE SLOPE OF POTENTIAL MAXIMUM SOLUTION

ON NEGATIVE SLOPE OF POTENTIAL MAXIMUM SOLUTION

ON NEGATIVE SLOPE OF OSCILLATORY SOLUTION
LANE6 = 1 NORMALLY (OR TO START)

LANE6 = 2 IF PHIPRIME AT A INFLECTION POINT OF A MONOTONIC
SOLUTION IS TOO SMALL TO AFFECT CONST

LANE6 = 3 IF PHIPRIME AT AN INFLECTION POINT OF A POTENTIAL

MINIMUM SOLUTION IS TOO SMALL TO AFFECT CONST

LANE6 = 4 OR 5 ON THE FINAL PASS FOR WITH THE CORRECT INFLECTION

POINT PHIPRIME FOR MONOTONIC OR POTENTIAL MINIMU_
SOLUTION RESPECTIVELY

PHIPRIME*_2 = 2.*DEBY2_((ELECTRON CHARGE DENSITY}-(ION CHARGE DENSITY}

-SIGN_I.128_EXPF(PHIM)/(1,+ERF(SQRTF(-PHIM)})_SQRTF(PHI-PHIM).ETA

-(I.128_CI_EXPF(-MAXIF(POT,PHIMAX})_SQRTF(MAXIF(POT_PHIMAX)-PHI)

-2.256*C2_EXPF(-PHIMAX)_SQRTF(PHIMAX-PHI))/(I.+ERF(MAXIF(PHIMAX,
POT)}))+CONST

C1 = +I. IF POT IS GREATER THAN PHIMAX

C1 = -I, IF POT IS LESS THAN PHIMAX

CP = I, IF POT IS GREATER THAN PHIMAX AND PHI IS LESS THAN PHIMAX
C2 = O. OTHERWISE

X2 = I.

LDUMMY : 1

CALL CHARGE(ETA,POT,PHIM,PHI(1)_PHI(2)_PHI(3),PHI(4),SIGN)
PHI(5) = DEBY2*PHI(4)
TERM5 = O.

1 GOTO(8,8,2,2,2,8, 8, 8),LANE

8 FACT=PHI(1)-PHINFL

IF(ABSF(FACT)-.1)20,20,13

13 GOTO(41,10,41,10,11,11,46_48),LANE

7 DO 4 I=1,18

4 CNS(1)=O.

GOTO(8,8,6,5,6,8,46,46),LANE

5 CC(6):EXPF(PHIM}

CC(2)=CC(6)/CC(1)*.564189
GO TO 7

CC(61 = 1.0
CC(2)=.564189

7 Xl = 1.

40 CC(4)=.564189/CC(3)

IF(POT-IO0.)36_35_5

35 CC(5) = O.
GOTO B8

96 CC(5) = CC(4)_EXPF(MAXIF(-MAXIF(POT,PHIMAX),-POT))

CC(?}=CC(4)*EXPF(-PHIMAX)
28 PHINFL=PHI

IF(PHIM)24,9_9

24 IF(PHI-PHIM)25,25,9
25 PHINFL=PHIM-.2
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9
57

46

48

11

I0

4]

42

4_

28

14

15

56

16

22

2q

44

17

GOTO (579 I0,419 ]O, II ,II ,46,48) ,LANE
IF(PHI ) i0,41,41

TRY = SQRTF(PHIMAX-PHI)

TERM4 = 2,_CC(5)_TRY

GOTO 42

TRY = SQRTF(PHIMAX-PHI)

TERM5 : 4, * CC(7)_TRY

TRY = SQRTF(POT-PHI)

TERM4 = -2,*C((5)*TRY

GOTO 42

TRY = SQRTF(MAXIF(PHIMAX,POT)-PHI)

TERM4 = -2°*C((5)*TRY

GOTO 42

TRY = SQRTF(-PHI)

TERM5 = 4._CC(4)_TRY
TRY=SQRTF(POT-PHI)

TERM4 = -TRY_CC(5)_2.

TERMYY=PHI(Z)+TERM4+TERM5

TRY] = SORTF(PHI-PHIM)

TERMX = -SIGN_2._CC(2)*TRY1 *ETA + PHI(2)

TEMP=2._DEBY2_(TERMX+TERMYY)
GOTO(19,19,15+I6,49950,51,52),LANE

DPHIXX=DPHI_2

CONST=DPHIXX-TEMP

IF(DPHIXX-I.E-7_TEMP)56,56,17

LANE6 = XMAXOF(2,tANE6)

GO TO 17

CNS ( 2,2 ) =CHG_DEBY2

CNS(392)= DEBY2_ETA_CC ( 2 ) _SQRTF (2 • _CHG)

PHIMIN(1) = PHIM

CALL CHARGE(ETA,POTgPHIM,PHIMIN(1),PHIMIN(2),PHIMIN(9)'PHIMINI41'

1 0.)
CONST = -2._DEBY2*(PHIMIN(2)+PHIMIN(31-2._CC(51*SQRTF(POT-PHIM)

1 +4._CC(4)*SQRTF(-PHIM))

DPHIXX=TEMP+CONST

IF(DPHIXX)22,23,23

DPHI=DPHIXX

GOTO 18

DPHI=SQRTF(DPHIXX)
IF(DPHIXX+CONST_l.F-7+PHI-PHINFL)44,44,17

LANE6 = MAXOF(3,LANE6)

DPHIXX = 1.E -12
CNS(191): O.

CNS(2,1):DEBY2_(2._PHIIZ)-ETA_CCI2)/TRYI+CC(5)/TRY)+CNS(I'I)/2"

CNS(Z,I)=DEBY2_(-ETA_CC(2)_(I./TRYI-.5/TRYI**3) -CC(5)_

1 (I./TRY-.5/TRY_3))/Z.+CNS(I,I)/6.

=(DEBY2_(EIA_CC(2)_(.5/TRYI_*9-.75/TRYl_5)

5)_(.5/TRY_9-.75/TRY_*5))+CNS(2,1) )/12.

=(CNS(Z,I)-DEBY2_(ETA_CC(2)*(°75/TRYI_5-1°875/TRY1**7)

5)_(°75/TRY_5-1°875/IRY_7))/3.)/20°

=(CNS(4,1)+DEBY2*(ETA_CC(2)*(1.875/TRYl**7-6.5625/TRY1 *_9 )

5)*(1.875/TRY*_7-6.5625/TRY**9))/12.)/30.

18

]9

20

_37

21

CNS(4,1

1 -CC
CNS(5,1

1 +CC

CNS(6,1

1 -CC

RETURN

DPHI=-SIGN_SQRTF(TEMP+CONST)
GO TO ]8
IF(PHI)ll,37,37

IF(PHINFL)9,9,21

TEN/ = DPHIXX+FACT_CNS(1,1)

+FAET_*2*CNS(2,1)+FACT**3*CNS(3,1)
+FACT_4_CNS(4,1)+FACT_5*CNS(5,1)+FACT**6_CNS(6,1)

DPHI=SQRTF(TENT)
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GO TO 18
49 CNS(2_2) : PHI(S) * DEBY2

CONST : -TEMP
DPHIXX : 0,
DPHI = 0.
PHINFL = MAX]F(POT_PHIMAX)+.2
GOTO 18

50 DPHI : SQRTF(TEMP+CONST)
GOTO 18

51 IF(TEMP+CONSTi55,54,54

54 DPHI : -SORTF(TEMP+CONST)

GOTO ]8
52 IF(TEMP+CONST)53,54,54

5_ LDUMMY : 3

GOTO 18
55 LDUMMY = 2

GOTO 18

END

*CHARGE
SUBROUTINE CHARGE(ETA,PHIC,PHIM,PHIX,CHGELC,CHGION,CHGNET,SIGN)

DIMENSION POTL(B,IOO1),ARRAY(2,5OI},CNS(6,3),CC(iO),PHIMAX(6)

COMMON POTL,ARRAY,DEBY2,CONST,CNS,POT,PHIM,ETA

1 ,CC,TEMP,LANE6,DPHIXX,PHIMAX,LANE

] PHI=PHIX
IF(PHI-40.}]?,]69]6

16 Xl = I°E20

GOTO i8
17 X]:EXPFiPHI)

18 X4:O.

X6=O,
C CHGELC = ETA * EXPFIPHI)* {1. + SIGN * ERFISQRTF(PHI - PHIMIN)))/

C (I. + ERF(SQRTF(-PHIMIN)))

C SIGN IS NEGATIVE BETWEEN XPHIMIN AND COLLECTOR
C SIGN 1S POSITIVE BETWEEN EMITTER AND XPHIMIN

6 IF(PHI-PHIM-9.)899,9

8 CALL ERF(SORTF(PHI-PHIM),X5}

Y5=XI*(1.+X5*SIGN)/CC(1)

GO TO 10

9 CALL ERFI(PHI-PHIM,Y5,1.E-5)

Y5=Y5*EXPF(PHIM)/(I.+X6)

10 CHGELC:ETA*Y5

C CHGION = EXPF(-PHI)/(I.+ERF(SQRTF(MAX_F(POT,PHIMAX))}) *
C (1.+CI*ERF(SQRTF(MAXiF(PHIMAX,POT}-PHI})

C + C2*ERF(SQRTF(PHIMAX-PHI)})

C CI = I. IF POT IS GREATER THAN PHIMAX

C OR FOR XPHI BETWEEN EMITTER AND XPHIMAX

C C_ : -I. IF POT IS LESS THAN PHIMAX AND XPHI IS BETWEEN XPHIMAX AND

C COLLECTOR
C C2 : -2. FOR POT GREATER THAN PHIMAX, XPHI BETWEEN XPHIMAX

C AND COLLECTOR, AND PHI LESS THAN PHiMAX

C C2 = O. OTHERWISE
GOTO(12,21,12,20,12,12,12_20)_LANE

21 IF(PHI)20,12,!2

_0 CALL ERF(SORTF(PHIMAX-PHI),X4)

X4=X4_2.
12 CALL ERF(SQRTF(MAXIF(POT,PHIMAX)-PHI),X3}

IF ILANE-7 )13,19,13

19 X3 = -X3

13 CHGION=ll.+X3-X4))CCI3_/XI

CHGNET:CHGELC-CHGION

7 RETURN
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*LSP

C

C

C

C

C

C

C
9n

C

I00

i01

102

LEAST SQUARES PARABOLA
SUBROUTINE ROTATES AND TRANSLATES COORDINATES SO THAT THE NEW

ORIGIN IS XI3),X(4) AND THE X-AXIS PASSES THROUGH X(5),X(6).

THE PARABOLA Y=B*(1-X/(X3-X2))*X IS DETERMINED BY A LEAST SQUARE
DEVIATION OF Y1 AND Y4. ON RETURN THE INTERPOLATED VALUE, YP, iS
AVAILABLE,

SUBROUTINE LSP(X,II,I2,XP,YP,DYDXPI
DIMENSION X(IO),GOBACK(1)

TABLE GOBACKI6HGOBACK)

DIMENSION Xj(8)

EQUIVALENCE (SI,SY),(S2,SX),(XR,XX),(YR,YY),(B,Y4),iXj(4),XI),{Xj(

8),Y1)

IIl=2*I1
II2=2"I2

XJ=l.

XJ(2)=l.

X12=X(3)
X22=X(4)
SX=X(5)-X12

XJ(6)=X(5)-XP

SY=X(6)-X22

XJ(7)=X12-XP

F=-XJ(7)/SX

S=SQRTF(SX*_2 SY**2)
SI=SY/S

S2=SXlS

YY=X(III)-X22

XX=X(II1-1)-X12

XI=XX*S2+YY*S1

YI=YY*S2-XX*S1

XI=XI*(S-XI)

XX=X(II2-1)-XI2

YY=X(II2)-X22

X4=XX*S2+YY*S1

Y4=YY*S2-XX*SI

X4=X4*(S-X4)

B=S*(YI*XI+Y4*X4)/(XI**2+X4**2)

XJ(8)=O.

PATCH IN XJ(3)=O.,Xj(4)=O.
XR=F*S

YR=B*(1.-F)*XR

CALL QIRE(F,X12+XR*S2-YR_S1-XP,O.,O.,O.,O.,5.E-6,10.,XJ,GO)
THIS LSP VERSION IS INTENDED TO BE USED WITH DC PRINCE OIRE

IF(GO-GOBACE)101,90,101

YP=X22+YR*S2+XR*S1

Xl=B*(1.-F-F)

YI=SY/SX
DYDXP=IXl+Y1)/(1.-Xi*Y1)

RETURN

END
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APPENDIX B

CYLINDRICAL DIODE COMPUTER PROGRAM
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APPENDIX B: Cylindrical Diode Computer Program

_CYLDIODE

COMMON POINT'POTL_VTO'MONTH,J_WRITE,NWRITE,NWRMAX,KPLOT,

1 DNSEL,DNSION,CONSTI,CONST2, RAD,POTI,POT2,CUREL,CURION
2 'JMAX'INSIDE,DEBY2,DEBYI,LGOTO,J2MAX,RADVAL
3 ,ENRGMN

COMMON KEND, CYLSPH,KYLSPH,ANGTOL,VELTOL,VELTLL,POT,NPOT
DIMENSION POINT(20,150),POTL(8,1001), MONTH(_)

DIMENSION WRITE(20),POTI(IOOI),POT2(IOOI),XPOTIIIOOI),XPOT2(IO01I
DIMENSION VECTORIS),RADII(iO0_)

DIMENSION VTO(2,502),RADVAL(IOOi),POTi3,_O_

DIMENSION LABEL(3,2),ARRAY{2,5OI),XTEST(2,20)_LABEL_(2,2)

DIMENSION BITS(1),LABELI(4_2),LABEL2(3,2),LABEL4(2),LABELS(2)
DIMENSION LABEL6(2),LABELT(2,2),LIST(125)

TABLE LABEL(36H / (R/LAMBDA)SQ )

TABLE LABELI(48HEMITTING CYLINDER RADIUS ELECTRODE SPACING)
TABLE LABEL2(36H COLLECTOR RADIUS ELECTRODE SPACING )

TABLE LABEL3(24HRADIUS DIST- ANCE )
TABLE LABEL4 (12HUPPER LOWER )

TABLE LABELS(12H XPOT1XPOT2)

TABLE LABEL6(12HPOT1 POT2 )

TABLE LABELT(24HCYLINDRICAL SPHERICAL )

TABLE LIST(39,$(ANGTOL,DEBYE,DEBY2_DSLOPX,ENRGMN,ETA,

1 INSIDE_JFIRST,JMAX,JIMAX,J2MAX,JMIN,KEND,KFLAT,KPLOT_

2 KPOT,KPRINT,KRAD,KYLSPH,MONTH,NLIM,NWRMAX,POT,POT1,POT2,

3 POTL_RAD,RADII,SLOPE,SLOPEL,SLOPEU,SPACE,TOL,VELTOL,WEiGHT,
4 WRITE,XPOTI,XPOT2_XRAD))

TABLE BITS(O-377777777777}
DIMENSION DLTPHI(IO01}
EQUIVALENCE(XPOT1,RADII)_(XPOT2tDLTPHI),(ARRAY,POINT)

*KEND = 1 TO CALL FOR REINITIALIZATION OF ALL DATA BEFORE
* STARTING NEW CASE.

* = 2 TO RETAIN INITIAL DATA FOR USE WITH NEW INPUT.

* = 3 TO ITERATE USING PRESCRIBED WEIGHTING OF TWO

* INPUT POTENTIAL DISTRIBUTIONS, OR PREVIOUS ASSUMPTION

* AND CALCULATED RESULT.

* = 4 AFTER ERROR CALL, PRINT RESULTS AND EXIT,

* = 5 TO EXTRAPOLATE SINGLE SPECIES, EXTERNAL COLLECTOR SOLUTION.
* = 6 TO ITERATE, CALCULATING WEIGHT FACTOR FROM PREVIOUS HISTORY.
* = 7 FOR ITERATION ON INITIAL SLOPE, ASSUMING COLLECTOR

* POTENTIAL CONTROLS CUTOFF CONTOURS,

IF(SENSE LIGHT 1)27,1
27 KEND=4

GOTO 26

KPLOT=O

KPOT=O

KYLSPH=I

ASSIGN 27 TO LGOTO

NWRMAX=O

DSLOP=O.
TOL=I.E-5

ANGTOL=3.
POT(2)=1,
POT(3)=BITS
SPACE = BITS
VELTOL=I.5
ERR = BITS
CONSTI=.5
CONST2=,5
DSLOPX=BITS
SLOPEU=BITS
SLOPEL=BITS



SLOPE = BITS
JFIRST=I

NLIM=IO

JMIN=2

KEND=I

_KPRINT = I TO PRINT OUT 40 MAXIMUM DISTANCE

* = 2 TO PRINT OUT ALL DISTANCES.

KPRINT=I

*KRAD = 0 FOR EQUAL DISTANCE INCREMENTS,

= I FOR ARBITRARY DISTANCE INPUT,

KRAD=O

VTO(1,1)=O.
VTO(2,1)=O.

DO 15 I=2,101

FACTOR=IO._(FLOATF(I-2)/IOO.)

VTO(1,1}=.OOOiwFACTOR

VTO(1,1+IOO)=,OOIWFACTOR

VTO(1,1+2OO}=.OI_FACTOR

VTO(1,1+3OOI=.I_FACTOR

15 VTO(I,I+4OO)=FACTOR

VT0(1,502)=I0°

DO 188 I = 2,502
188 VTO(2,I)=VTO(I,I)_2

DO 207 I=2,1001

XPOTI(1)=BITS
XPOT2(1)=BITS

POTI(1)=BITS

20? POT2(1)=BITS
DEBY2=I,

_SPACE, XRAD ARE POSITIVE FOR INTERNAL COLLECTOR

2 CALL DING (LIST,I)

IF(SENSE LIGHT 1)25,51

51 INSIDE=INSIDE

KYLSPH=KYLSPH
KPRINT=KPRINT

KEND=KEND

CTEST = SIGNF(1.,POT)
JFIRST=JF IRST

J2MAX=J2MAX

JMIN=JMIN

JMAX=JMAX
NCOUNT=O
CYLSPH=KYLSPH
VELTLL=I°/VELTOL
NPOT=LCOUNT ( 1 _30 ,POT,2
POTMIN=O°
IF(NPOT-1 )255,255,252

252 II=9_NPOT
III=2_NPOT

253 POT (II-I )=POT (III )

POT (I I-2 )=POT (III-1 }

IF( I II-4) 255,255 _254

254 III=III-2

II=I I-3

GO TO 253
255 DO 248 II=I,NPOT

248 POTMIN=MINIF(POTMIN,POT(I,II)_CTEST)

POTMIN = 3. _ POTMIN_CTEST-I,_POT
IF (KEND-5)3,50,3

_INSIDE = I FOR INTERNAL COLLECTOR, EMITTER RADIUS

DEBYE LENGTHS.
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* : 2 FOR EXTERNAL COLLECTOR,
* DEBYE LENGTHS.

* : 3 FOR INTERNAL COLLECTOR,

* DEBYE LENGTHS.

* = 4 FOR EXTERNAL COLLECTOR,
* DEBYE LENGTHS.

3 GO TO(122,122,123,123),INSIDE
122 POTL(1,1)=I.

POT(2,I)=RAD

GO TO 124
123 POTL(I_I)=O,

124 IF((JMAX+1)/2-JMAX/2)28928_29

28 JMAX=JMAX+I

29 XJMAX=FLOATF(JMAX)-I.

EMITTER RADIU_ SPECIFIED tN

ELECTRODE SPACING SPECIFIED IN

ELECTRODE SPACING SPECIFIED IN

XJNAX = FLOATF(J2MAX)-I.

DO 500 I = 1,8
500 VECTOR(1) = O.

CUREL=O.

CURION=O.

J=l

X=I./XJMAX

GOTO(T2,72,T3,T3),INSIDE

72 LBL2=I
SPACE=RAD

XRAD=X*(1.-RAD)

GOTO ?4

73 LBL2=2

RAD=SPACE

SPACEX=I./SPACE

XRAD=-X

74 POTRAT=X_POT

XRAD2=XRAD**2/2.

DEBYI=SQRTF(DEBY2)

DEBY3=DEBYE**2/DEBY2

POTL(2,1)=O.

POTL(3,1)=O,

IF(KEND-?)126,1319126
126 IF(KPOT-4)66,56,66

66 DO 6 J=2,J2MAX

IF(KRAD)69,69968

68 POTL(I,J):RADII(J)
69 RATIO=J2MAX-1

CALL RADFCN(KRAD+I,J2MAX,I,RATIO)
TO IF(KPOT-1)4,5,6

4 POTL(2,J)=POTL(2,J-1)+POTRAT
GO TO 6

5 POTL(2,J)=WEIGHT*POTI(J)+(1.-WEIGHT)*POT2(J)
6 CONTINUE

IF(KEND-6}56,57_56

57 IF(KPOT-I)56,58t56

58 IF(WEIGHT)59,56t59

59 NCOUNT=NCOUNT+I

JTEST=(JMAX+JMIN)/2

XTEST(2,NCOUNT)=POT2(JTEST)

XTEST(I,NCOUNT)=POTI(JTEST)
56 GOTO(81,B1,B2,B2),INSIDE

81 POTL(1,J2MAX)=RAD
GOTO 83
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82 POTL ( 1,J2MAX):I,
83 POTL (2,J2MAX)=POT

7 CONT I NUE
CALL CUTOFF
POTL (4,1) =DNSEL
POTL ( 5 _,1) =DNSI ON
POTL (6,1) =DEBY3* ( ETA*DNSEL-DNS ION )

132 DO 8 J=JMINgJMAX
J=J
CALL CUTOFF
POTL (4,J) =DNSEL
POTL (5,J) =DNSI ON

8 POTL (6 _J) =DEBY3* ( ETA*DNSEL-DNS ION )
POTL ( 8,1 ) =0,
IF (JMIN-2) I06,106,107

106 JJMIN=3
J2MIN=I

J3MIN=2

GO TO 108

I07 JJMIN=JMIN+2
POTL (8,JM IN }=0.

J2MIN=JMIN
J3MIN=JMIN+I

IF (((JMAX-JMIN)/2)*2-(JMAX-JMIN 1)12 i,108,121

121 CALL ERROR

108 DO 227 J=JJMIN,JMAX,2
GOTO(75,75,76,76) ,INSIDE

* REF1, CF EQ. 17C1

75 RI=POTL(1,J-2)

R2=POTL( 1 ,J-l)

R3=POTL( 1 ,J )

GOTO 9

* REF1, CF EQ. 17C2

76 RI= (1.-POTL (1_ J-2 )*SPACE)

R2= (1.-POTL (1_ J-1 )*SPACE)

R3=I.-POTL (1 ,J )*SPACE

9 GO TO (227,226),KYLSPH
* REF1, CF EQS. 17SI, 17S2

226 R] =R1"'2

R2=R2**2

R3=R3**2
* USING SIMPSONS RULE INTEGRATION. ALTERNATE INTEGRAl_ VALUES
* ARE FOUND

227 POTL(8.J)=(POTL(6,J-2)*RI+4.*POTL(6,J-1)*R2+POTL(6,J)*

1R3)/6.*(POTL(I,J)-POTL(1,J-2))+POTL(8,J-2)

JJMAX=(JMAX+J2MIN)/2

RRI=I.

DO I]4 J=JJMIN_JMAX
RR=ABSF((POTL(8,J)-POTL(8,J-2))/(POTL(1,J)-POTL(1,J-2)))

100 IF(RR/RR1-3.)114,114,99
99 RRI=RRI*IO.

GOTO IO0

114 CONTINUE

101 DO 10 J= 1,JJMAX
GOTO(89,90.90,90)gINSIDE

89 ARRAY(I,J)=Io-POTL(I,2*J-I)

GOTO 10

90 ARRAY(1,J)=POTL(I'2*J-1)

10 ARRAY(2,J)=POTL(8'2*J-I)/RRI

11=2

14=4
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91

* REF1
77

92

INTERPOLATE FOR
93

JXMIN=J3MIN)2+I
DO 12 J=JXMIN ,JJMAX

JJ=2*(J-1)

GOTO(91,92992,92),INSIDE
ENTRY=I.-POTL(I,JJ)

GOTO 93
ENTRY=POTL(1,JJ)

INTERMEDIATE INTEGRAL VALUES
CALL LSP(ARRAY(I_J-2),II,14,ENTRY,POTL(8,JJ|_DUMMY)

POTL(B,JJ)=POTL(B,JJ)*RR1
IF(J+l-JJMAX)12_11911

11 I4=3

12 11=1
POTL(7,1)=O,

POTL(7,J2MIN)=O.
GO TO (110t110_111_111)_INSIDE

110 POTL(8_J2MIN)=POTL(8_J2MIN)/POTL(ItJ2MIN)** CYLSPH

GO TO 112

111POTL(8_J2MIN)=POTL(8_J2MIN}/(1.-POTL(ltJ2MIN)*SPACE) ** CYLSPH

112 DO 30 J=JJMIN_JMAX_2
GOTO(77_77.78978)_INSIDE
9 CF EQ. 19CI
POTL(8_J-1}=POTL(8_J-I)/POTL(I_J-1)

POTL(8,J)=POTL(8tJ)/POTL(ltJ)

GO TO (309228)tKYLSPH

REFI_ CF EQ, 19$1
228 POTL(StJ-1)=POTL(8_J-1)/POTL(ItJ'I)

POTL(8_J)=POTL(B_J)/POTLII_J)

GO TO 30
REFI, CF EQS- 19C2, 19S2

78 POTL(8,J-I)=POTL(8_J-1)/(1.-POTL(Z,J-I)*SPACE) ** CYLSPH

POTL(8,J)=POTL(StJ)/(1.-POTL(I_J)*SPACE) ** CYLSPH

INTERMEDIATE INTEGRAL VALUES ARE HISSING AGAIN

30 POTL(7,J)=POTL(7_J-2)+(POTL(8,J-2)+4.*POTL(8_J-1)+POTL(8_J))/6.

1 *(POTL(1,J}-POTL(I_J-2))

RRI:I.

DO 104 J:JJMIN_JMAX
RR=ABSF((POTL(7,J)-POTL(7,J-2))/(POTL(I_J)-POTL(I_J-2)))

102 IF(RR/RRI-3. )I04_104.103

103 RRI:RRI*IO.

GOTO 102
104 CONTINUE

DO 31 J: 1,JJMAX

31 ARRAYi2_J):POTL(7_2*J-1)/RR1

I1=2

I4=4
DO 33 J=JXMIN_JJMAX
JJ=2*(J-1)
GOTO (94_95_95,95)gINSIDE

94 ENTRY=I=-POTL(I_JJ)
GO TO 105

95 ENTRY=POTL(I_JJ)

INTERPOLATE FOR MISSING INTEGRAL VALUES

105 CALL LSP(ARRAY(1,J-2),IltI4_ENTRY_POTL(f,JJ)gDUMMY)

POTL(7_JJ)=POTL(7_JJ)*RR1
IF(J+1-JJMAX)33_32_32

3_ I4=3
33 II:1

GOTO (79_79t80_80},INSIDE
79 POTLL=POTL(2_JMAX)-POTL(2_JMIN)-POTL(7.JMAXI

GO TO (229.230)_KYLSPH
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REF1, CF EQ. 20CI

229 POTLL=POTLLILOGF(POTL(I,JMAX)/POTLII,JMIN))
GO TO 231

REFI, CF EQ. 2051

230 POTLL=POTLL/ (I.-POTL(I,JMIN)/POTL(1,JMAX))

231 POTL(8,J2MIN)=POTLL/POTL(1,J2MIN)

POTL(3,J2MIN)=POTL(2,J2MIN)

DO 38 J=JBMIN,JMAX

IF(J-J2MAX)36_35,35

35 POTL(B,J2MAXt=POT

GO TO (235,236),KYLSPH

36 POTL(3,J)=POTL(79J)+POTL(2,J2MIN)

GO TO (232,233),KYLSPH

232 POTLI3,J)=POTL(3,J)+POTLL*LOGF(POTLI1,J)/POTLII,J2MIN))
235 POTL(8,J)=POTL(8,J)+POTLL/POTL(1,j)

GO TO 38

233 POTL(B,J)=POTL(B,J)+POTLL*(I.-POTLIi,J2MIN)/POTL(I,J))

236 POTLIS,J)=POTLIS,J)+POTLL/POTLII,J)**2*POTLI1,J2MiN)

38 POTL(7,J)=POTL(69J)-POTL(8,J)IPOTL(1,J) * EYLSPH

109

120

116

117

118

119

8O

REF1

237

1

POTL(T,1)=POTL(6_1)-POTL(891) * CYLSPH

IF(JMIN-2)117,1179109

POTL(7,JMIN)=POTL(6,JMIN)-POTL(8,JMIN)/POTL(1,JMIN) * CYLSPH
DO ]]6 J=29JMIN

POTL(3_J)=POTL(2,J)

IF(J2MAX-JMAX)26,26,]18

DO 119 J=JMAX,J2MAX

POTL(3,J)=POTL(2_J)

GOTO 26

POTLL=POTL(2,JMAX)-POTL(2,J2MIN)-POTL(7,JMAX)

GO TO (2379238)_KYLSPH

, CF EO. 20C2

POTLL=POTLL/LOGF((1.-POTL(19JMAX)*SPACE)/(1.-POTL(1,J2MIN)

*SPACE))

GO TO 239

* REF1, CF EQo 2052

238 POTLL=POTLL/(1.-(1.-POTL(1,J2MIN)*SPACE)/(1.-POTL(1,JMAX)*SPACE))

* REF1, CF EQ. 1952

85 GO TO (240,241)gKYLSPH

241 POTL{39J)=PO[L(2,J2MIN)+POTL(7,J)+POTLL*(1.-(lo-POTL(1_J2MIN)

1 _SPACE)/(1.-POTL(1,J)*SPACE))

* REF1, CF EQ. 1752

242 POTL(8,J)=POTL(8,J)+POTLL/(1.-POTL(1,J)*SPACE)**2*(1.-POTL(1,J2MIN

1) *SPACE)

GO TO 87

239 POTL(8,J2MIN)=POTLL/(I.-SPACE*POTL(1,J2MIN))

POTLI3_J2MIN)=POTL(2,J2MIN)
DO 87 J=JBMINgJMAX

IF(J-J2MAX)85,84_84

84 POTL(3_J2NAX)=POT

GO TO (86_242) ,KYLSPH

* REF], CF EO. 19C2

240 POTL(B_J)=POTL(2,J2MIN)+POTL(7,J)+POTLL*LOGF

1 ((1.-POTL(1,J)*SPACE)/(1.-POTL(1,J2MIN)*SPACE))

* REF1, CF EO. 17C2

86 POTL(8,J)=POTL(89J)+POTLL/(I.-POTL(I,J)*SPACE)

REF1, CF FQS. 16C29 1652

87 POTL(7_J)=POTL(6,J)+POTL(8,J)/I1.-POTLI1,J)*SPACE)*SPACE * CYLSPH

POTL(7_L)=POTL(6_I)+POTL(8,1)*SPACE * CYLSPH
IF(JNIN-2)]I79]IT,]I5

115 POTL(7,JMiN)=POTL(6,JMIN)+SPACE/(1.-POTL(1,JMIN)*SPACE)*
lPOTL(8_JMIN) * CYLSPH

I

I

I

I
l

I
l
I

I
I
I

I
I

I
I
I

I
I

I
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210

GOTO 120
26 IF(DEBY2-1.)16,14,16

14 LBL:2
LBLI:I

GO TO 17

16 LBL=I

LBLI=2

17 WRITE(3,1OOO)LABEL7(I,KYLSPH),LABELT(2,KYLSPH),(MONTH(I)_I:lo3)9

1 (LABELI(I,LBL2),I:I,4),DEBYE,(LABEL2(I,LBL2),I=lt3),RAD,ETA_

I,LBL},I:I,3),POT(1),CUREL,CURION

)210,211,210

O03)LABEL3(1,LBL2),LABEL3(2_LBL2)
,(LABEL(I,LBL),I:I,3),(LABEL(I,LBL1}_I=2,3|

219

125

220
41

18

19

2 (LABEL(

IF(KEND-7

WRITE(3,1

1
GO TO 212

WRITE (3,

J2MAX:XMA
IF(KEND-7

DO 125 I=

DLTPHI(I)

20
214

213
1J:NI,N2,LSKIP)

NWRITE : 1

217 GO TO (23_22),LG0

22 NI=J2MAX

N2=J2MAX

23

24

216

218
98

l.'t't

728

55

IO04)LABEL4( LBL4),(LABEL(I,LBL1)tI:2,3)

XOF(J2MAX,JMAX)
)219,220,219

1,J2MAX

=POTL(3_I)-POTL(2_I)

GOTO(41,18),KPRINT

IF(J2MAX-41)18_18,19

NI=I

N2=J2MAX

LSKIP=I

LGO=I
GO TO 20

LSKIP=J2MAX/40+I

N1=1

N2=J2MAX

LGO:2
IF(KEND-7)21_,213,214

WRITE(3,1OO1)((POTL(I,J)_I=I_8),DLTPHI(J),J=NI_N2,LSKIP}

GO TO 217

WRITE (3,1005)(XPOTI(J),POTL(2,J),XPOT2(J),(POTL(I_J),I:3,8)_

LSKIP=I

LGO=I

GO TO 20

DO 24 I=I_J2MAX

POTI(1)=POTL(2_I)
POT2(I):POTL(3,I)

PUNCH IO06,LABEL6(2 ),(POT2(1)_I = I_J2MAX)

PUNCH IO06,LABEL6(I ),(ROTI(1)_I i I_J2MAX)

IF(KEND-7)218_218_218
PUNCH 1006_LABELS(II_(XPOTI(I)_I=I_J2MAX)
PUNCH 1006_LABEL_(2)_(XPOT2{II_I=l_J2MAXt
IF(SENSE SWITCH _)25,9B
GOTO(1 _2 _9_2_,39,5_ ,1_6) tKEND

IF(NCOUNT+Z-NLIM)256_l,25
IF(ABSF(ERR)-TOL)I_l_I57
NCOUNT=NCOUNT+I
I_ = JFIRST + 1
DO ?_B I1 " 1},1001
DO 728 I_=A_
POTL(I2,!I)=BITS
GO TO 1_1
JTEST=(JMAX+JMIN)t2
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* EFN

5O

IF(NCOUNT-NLIM)71,2,2
71 NCOUNT:NCOUNT+I

XTEST(I,NCOUNT):POTL(2,JTEST)

XTEST(2,NCOUNT)=POTL(3,JTESTI

IF(ABSF(XTEST(I,NCOUNT)-XTEST(2,NCOUNTI}-TOL)6096196I
60 NCOUNT=NCOUNT-I

KEND=3

GOTO 39

61 IF(NCOUNT-1)62,62_67

67 ANGL=ATANF((XTEST(2,NCOUNT)-XTEST(2,NCOUNT-I))/i×TEST(I,NCOUNT)

1 -XTEST(1,NCOUNT-1)))

CALL COEFFT(XTEST(I,NCOUNT),ANGL,UN,VN,CN1

UNI=I,

VNI=-I.

CNI=O.

CALL DETER{CN,CNI,VNgVNI,UN,UNI,XX_YY)

WGHT=(YY-XTEST(2,NCOUNT))/(XTEST(I_NCOUNT)-XTEST(2,NCOUNTI)

IFCWGHT+5.)62962963

63 IF(WGHT-1.)64,62,62

62 WGHT=WEIGHT

64 DO 65 I=I,J2MAX

65 POTL(2,I)=WGHT*POTI(I)+(1.-WGHT)*POT2(I)
KPOT=4

GOTO 29

39 ERR=O.

DO 40 J=2,JMAX
40 ERR =MAX1F(ERR ,ABSF(POTL(2,J)-POTL(3,J))}

NCOUNT = NCOUN T+ 1

I F(NCOUNT-NL IM )42,2_2

42 IF(ERR -TOL)2,3,3

25 CALL EXIT
GOTO LGOTO,(27,1)

50 TO EFN 49 PROVIDE FOR EXTRAPOLATING SINGLE SPECIES

EXTERNAL COLLECTOR SOLUTIONS.

J2=JMAX+I

DO 43 J=J2,JIMAX

43 POTL(1,J)=POTL(I,J-1)-XRAD

48 JB=J2+4

DO 44 J=J2,J3

JMAX=j
POTLI8,J)=POTL(8,J-1)-XRAD*POTL(TgJ-i)

POTL(3,J)=POTL(3,J-1)-XRAD*POTL(89J-I)+XRAD**2/2,*POTL(79J-I)

45 POTL(2,J)=POTL(3_J)
CALL CUTOFF

POTL(4,J)=DNSEL

POTL(5,J):DNSION
POTL(6_J)=DEBY3*(ETA*DNSEL-DNSION)

POTL(7,J)=POTL(6,J)-POTL(8,J)/POTL(1,J)* CYLSPH

GOTO(54,44),LANE

54 IF(J-J3)44,46,46

46 CALL BLAESS(-XRAD)

LANE=2

GOTO 45

44 CONTINUE

IF(J3-J1MAX)47,49,49
47 J2=J3+l

LANE=I

GOTO 48

49 KEND=2

RAD=POTL(I,JNAX)

POT=POTL(3_jMAX) -200-
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189 I

150 S
1

128 I

190 I

152 S

I

* POTI

POT2
* WE ST
* C

12"/

181
223
224

130

222
195

196

197

172

153

160
151
191

175

GOTO 26
J2MAX = JFIRST+i

JMAX : J2MAX

POTL(2,J2MAX) : POT

POTL(1,J2MAX) = I.

J:l

DX : I./FMULT/DEBYE
IF(SLOPEU-BITS)128,189,128

F(POT1(JFIRST+l))ISO,128,150

LOPEU : (2.*POTI(JFIRST+I)-

/DX

F(SLOPEL-BITS)127,190,12T
F(POT2(JFIRST+l}}152,127,152

LOPEL : (2o*POT2(JFIRST+I)-

DX

.5*POTI(JFIRST+2)-I.5*POTI(JFIRST)}

IS A SET OF POTENTIALS FOR A DISTRIBUTION PASSING ABOVE THE

IS A SET OF POTENTIALS FOR A DISTRIBUTION PASSING BELOW THE
ART HERE FOR CALCULATION WITH INITIAL SLOPE AND

OLLECTOR CONTROLLING CUTOFF CONTOURS,

I=FMULT_DEBYE*(I.-XPOTI(JFIRST))

RATIO=FLOATF(I)

DX=(1.-XPOTI(JFIRST)}/RATIO
I:I+JFIRST

JXMAX=I+6

POTL(1,JFIRST)=XPOTI(JFIRST)
CALL RADFCN(1,1tJFIRST,RATIO)

IF(NCOUNT)181,181,222

IF(JFIRST-1)I30,130,223
DO 224 J=2,JFIRST

POTL(1,J)=XPOTI(J)

CALL RADFCN(2,JFIRST,1,FLOATF{JFIRST-I))
DO 133 J=IgJFIRST

POTL(1,J}=XPOTI(J)

POTL(2,J)=(POTI(J))

CALL CUTOFF

POTL(4,J)=DNSEL

POTL(5,J)=DNSION

POTL(8,J)=(POTL(2,J+I)-POTL(2,J-1))/(POTL(I,J+I)-POTL(1,J-1))

POTL{6,J)=DEBY3_(POTL(4,J)_ETA-POTL(5tJ))
IF(POTL(6,JFIRST) * CTEST)I96,196tI95

ITESTI=-I

GO TO 197
ITESTI=O

IF(VECTOR(8))172,153,172

SLOPE = SLOPEX

GOTO 168

IF(SLOPE-BITS|134,160,134

IF(SLOPEU-BITS)151,163,151

IF(VECTOR(3))191,175,191

SLOPE=SLOPEX

GO TO 163

VECTOR(3) = SLOPEU

SLOPE = SLOPEU

I = LCOUNTll,IOOI,XPOTI ,1)-1

159 VECTOR(I) = MAXlF(VECTOR(1),I°)
162 VERT=POTI(I-1)+(POTI(1)-POTI(I-1))/(XPOTI(1)-XPOTI(I-I))

1 *(I.-XPOTI(I-1))

VECTOR(T)=(POT-VERT}*CTEST

ERR : VECTOR(T)
IF(SLOPEL-BITS)I64,165,164

IF(VECTOR(6))IT2t176,172'

.5*POT2(JFIRST+2)-I.5*POT2(JFIRST))/

END

END

163

164
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176

192

193

VECTOR(I} = MAXlF(VECTORtl),I.i
DO 192 I=],JXMAX
IF(XPOT2(1)-.9999)192,1939193
CONTINUE

CALL ERROR

VERT=POT2(I-I)+(POT2(I)-POT2(I-1)}/(XPOT2(1)-XPOT2(I-1))
1 *(I.-XPOT2(I-I))

ERR=(POT-VERT)*CTEST

SLOPE = SLOPEL

165 IF(ERR-BITS)I68,167,

ITESTI = -i IF EMITTER

= 0 UNTIL FIRST

DENSITY TO

ITEST1 IS NUMBER OF LATE

168 IF(VECTOR(8))243,243
244 VECTOR(6) : VECTOR(8

VECTOR(8) : O.

168
CHARGE DENSITY IS ELECTRON-RICH.

TRANSITION FROM ION-RICH CHARGE

ELECTRON-RICH CHARGE DENSITY, THEN
ST CHANGE OF SIGN OF CHARGE DENSITY.

,244

}

243
249

25O
251

166

167

170

134

135

137

198
199

200
201
136

138

139

VECTOR(2) : VECTOR(4)

VECTOR(4) = O.

IF(DSLOPX-BITS)249,250,249

DSLOP=DSLOPX*CTEST

GO TO 251
DSLOP=.3*MAXIF(SLOPE*CTEST,POT*CTEST)*CTEST

CALL QIRE(SLOPE,ERR,O.,DSLOP,O.,-DSLOP,TOL,3.+FLOATF(NLIM),

I VECTOR�GO)

IF(SENSE LIGHT I)279166

IF(GO-6HGOBACK}1,134,1

IF(SLOPE-BITS)134,170,134

SLOPE = POT

POTL(8,JFIRST)=SLOPE

POTL(7,JFIRST)=POTL(6,JFIRST)+SPACE/(I.-POTL(1,JFIRST)*SPACE)

1 *POTL(8,JFIRST) * CYLSPH

J2=JFIRST+I

J3=J2+4
LANE=I
DO 140 J=J29J3
J2MAX=J+I
JMAX : J2MAX

POTL(I,J)=POTL(1,J-I)+DX

POTL(8,J)=POTL(8,J-1)+DX*POTL(?�J-I)

POTL(3,J)=POTL(2,J-1)+DX*POTL(8,J-1)+DX**2/2,*POTL(TtJ'I)

IF((POTL(3,J)-POTMIN)*CTESTI14591379i37

POTL(2,J)=POTL(39J)

POTL(3,J+I)=POT

POTL(2,J+I) = POT

POTL(I,J+I) = 1,
CALL CUTOFF

POTL(4,J}:DNSEL

POTL(5,J)=DNSION

POTL(6,J)=(ETA*DNSEL-DNSION)*DEBY3
IF(ITESTI)198,200,200

IF(POTL(6,J)*CTEST)I99,1999136

ITESTI=O

GO TO 136

IF(POTL(6,J)/POTL(6,J-1})201,201,136
ITESTI=J

POTL(7,J)=POTL(6,J)+SPACE/(1.-POTL(1,J)*SPACE}*POTL(8,J)

1 *CYLSPH

GO TO(138,171),LANE

IF(J-J3)140,139,139

CALL BLAESS(DX)
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I

I
I

I
I

I
i

I
I

I

I
I

I

I
I

I
I

! |

I
I

140

171

182

183

245

246

LANE=2
GO TO 137

CONT I NUE

I F ( ( POTL ( 3, J)-POT )*CTEST) 141,182,182
I F (POTL ( 1 ,J ) -1.00i ) 143,143_ 183

JJ = J
I F (POTL ( 1 ,J-I )-I • )246,245 _245

JJ = JJ-1
IF(POTL(] ,JJ-i)-I,)246,245,245

POTL(3,JJ) = POTL(3,JJ-1)+(POTL(3,JJ)-POTL(3_,JJ-1))

1 / (POTL( 1,JJ )-POTL ( 1,J J-1 ) )*(1.-POTL (1,J J-11 |

POTL(2,JJ) = POTL(3,JJ)
POTL(8,JJ) = POTL(8,JJ-1)+(POTL(8,JJI-POTL(89JJ-1))

1 / (POTL( 1 ,JJ)-POTL ( 1 ,J J-1 ) }* (1 o-POTL (1,J J-1 I I

POTL(1,JJ) = 1.

IF( (POTL ( 3, JJ)-POT )*CTEST ) 185,187,247

185 J = JJ

GOTO 145

247 J = JJ

GOTO 143

187 KEND = 1

GOTO 155

141 I F (POTL ( 1 ,J)-.9999) 142,183_183

147 J2=J+l

I F( I TEST1 ) 135,135,202
202 I F (J-ITEST1-15) 135,135,203

203 DXX=(POTL(1,J)-POTL(1,ITEST1))/15.
I TEST2= ( 1 .-POTL ( 1,3) )/DXX

204 IF(XMODF(ITEST2,5) )205,206,205

205 ITEST2=ITEST2+I

GO TO 204
206 DXX=(1.-POTL(1,j) )/FLOATF(ITEST2)

DX=MAX1F ( DX ,DXX)

J2MAX=J+ I TEST2+I
JXMAX=J2MAX

CALL RADFCN( 1, J2MAX-] ,J,] .IDX }

GO TO 135

lZ_q JXMAX = J+l

DO 144 I=I,JXMAX

XPOT1 ( I )=POTL( 1, I 1

144 POTL (3, I ) =POT2 ( I )

I =JXMAX+I

LBL4=I

DO 208 II=I,lO01

POTL(2,II )=BITS

POTL (3, I I )=POT2 ( I I )

208 XPOT] (II)=BITS

SLOPEU=POTL (8, JFIRST )

174 VERT = POTL(2,J)+(I,-POTL(1,J)}*POTL(8,J)

ERR= (POT-VERT)*CTEST

SLOPEX = SLOPEU

_-:c'TO 147

' _4,.:" I::I,jXM_X

;...... 2 i ):::,DJIL(1,! )
"Z,_- :_- r; i _:', i i =;POTI ( 1 )

_ ,:" :'_",9 iI:_-i_.lCO]

_'( !L {P.I i )=POTI ( I i)

.:i",;L ( 3, ; i )=BITS
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209 XPOT2(II):BITS
SLOPEL:POTL(8,JFIRST)

VERT = POTL(3_J}

ERR:(POT-VERT)*CTEST
SLOPEX : SLOPEL

147 SLOPE = BITS

IF(ABSF (POTL (2 ,JF IRST+5)-POTL(3,JFIRST+5) )-1. E'6) 148,155 _155
148 J2=JF'iRST+I

IF(ERR}i?@,177,177

177 VECTOR(6):ERR

GOTO 179
178 .VEC TOR(7):ERR

179 'VECTOR(4) = O.

VECTOR(8) = O.
J3=J2+4
SLOPEU=(POTL(2,J3+I)-POTL(2,J3-1)}/2,/DX
SLOPEL=(POTL(39J3+l)-POTL(3,J3-1))/2°/DX
DO 149 J_=J2_J3
POTL(2_J4)=(POTL(2_J4)+POTL(39J4))/2,

149 POTL(3_J4)=POTL(2_J4)
JFIRST=JFIRST+5
IF(ABSF(POTL(2_JFIRST+5)-POTL(3,JFIRST+5))m1,E-6)148_180,180

180 SLOPE=VECTOR(6)/(VECTOR(6)-VECTOR(7))_(VECTOR(3)-VECTOR(2))
I +VECTOR(2)

155 J2MAX=XMAXOF(LCOUNT(I,IOOI,XPOTI,1},LCOUNT(I,IOO1,XPOT2,1))

GO TO 26

1000 FORMAT

RESTORE
-X -ADIODE POTENTIAL DISTRIBUTION

X-I/-I/-I

SPACE

-X -A / DEBYE LENGTH

_X -A / EMITTER RADIUS

ELECTRON DENSITY / ION DENSITY AT EMITTER

XLES)

COLLECTOR BIAS POTENTIAL

ELECTRON CURRENT
ION CURRENT

END OF FORMAT

1003 FORMAT
SPACE

-X -A ASSUMED CALCULATED ELECTRON ION

X PHI PHIC - PHIA

-X -A POTENTIAL POTENTIAL DENSITY DENSITY

X PRIME

/EMITTED /EMITTED
ELECTRON ION

DENSITY DENSITY

( -A)

SPACE
END OF

1001 FORMAT
-X -OPF4

X -F4

END OF

1004 FORMAT

FORMAT

-F6

-IPG3

FORMAT

ANALYSIS - CALCULATION DATE

= -F4
= -F4
= -F4

"A = -F4
_,F4
_F4

(EMITTED PARTIC

NET CHARGE PHi

DENSITY DOUBLE

* -A PRIME

-F6 -F5 -F5 -F4 -F4

BOUND

POTENTIAL

X WITH-X -A BOUND

UPPER BOUND LOWER

DIST- DIST-

XHARGE PHI PHI
ANCE POTENTIAL ANCE

THESE DATA ARE CONSISTENT

ELECTRON ION

DENSITY/ DENSITY NET C

EMITTED EMITTED DEN
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l

II

il
li

I

I
il

il
I

g
II
I

It
I

!

II

!
I

xsITY DOUBLE

X -A PRIME

pRIME

SPACE

END OF FORMAT

1005 FORMAT

-X .-OPF4 -F6

X -F4 -F4

END OF FORMAT

1006 FORMAT
-X -A

-F6

REPEAT 1

END OF FORMAT

END

-F6 -F6
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_CUTOFFOOCALCULATES CUTOFF VELOCITY CONTOURS

SUBROUTINE CUTOFF

COMMON POINT,POTL,VTO,MONTH,J,WRITE,NWRITE,NWRMAX�KPLOT9

I DNSEL,DNSION,CONST1,CONST2, RAD,POTI_POT2,CUREL_CURiON
2 _JMAX,INSIDE,DEBY2,DEBYI*LGOTOtJ2MAX,RADVAL

3 ,ENRGMN,KEND,CYLSPH,KYLSPH,ANGTOL,VELTOL,V_LTLL�POT,NPOT

171

231

284

285

125

126

HERE WE SCAN FOR

109 VRJION=O.

DIMENSION POINT(20_150),POTL(8,1001)_ MONtH(_)

DIMENSION VTO(2,502),RADVAL(1001)_NNX(150),GRANDi4_ISO)_,PO't(3,_O)

DIMENSION WR ITE(.20) ,POTI (1001 ),POT2 (1o01 )
TABLE LABELI(24HCYLIND.RICAL SPHERICAL 1

DIMENSION LABEL(2,2),BITS(1)

DIMENSION LABELI (2 _,2)....

DIMENSION X(2) ,TEMP(3) -
TABLE B ITS (0-3777"/77777"/-7 )

TABLE LABEL(24H ELECTRON ION)

EQUIVALENCE (POTL,POINT(3OOII),(GRAND,POINT(8001)}

EXPPF(X)=EXPF( -MI NIF (10. ,X) )

LANE = 1

CDIR=I.
IF (KEND-7)654_ 653,654

LANE = 2

N = I

NN=I

NNI:I

NNX( I )=i

DO 171 I=1,3000

POINT(1):O.

DO 231 I=2,]50
NNX ( I ) =0
GO TO (125_126t284,285,284t285),INSIDE
TCRIT=ATANF (SQRTF ( ((1.-POTL (1,J)_RAD) / (I.-RAD ))'_'2-1. ))

GOTO 109

TCRIT=ATANF(SORTF((1.-POTL(1,J)*RAD}_'*2-1.) )+1.E-6

GOTO 109

TCRI T=ATANF (SORTF ((POTL (1 _J)/RAD) _w2-1. })

CDIR=-I.

GOTO 109

TCRIT=ATANF (SQRTF (POTL (I ,J)*_'2-1. ))+i. E,-6

CUTOFF CONTOUR FOR PARTICLES BOUND AWAY FROM EMITI'ER

VRJEL=O.

POTMAX = O,

DO 501 I=l,J
656 TAN=VTO(2,N)_RADVAL(1)

TANI=TAN-POTL(2.,I)
VRJEL=MAXlF(VRJEL,TAN1)

TAN2=TAN+POTL(2,1)

VRJION=MAXIF(VRJION,TAN2)

501 CONTINUE

VRXION=VRJION

HERE WE SCAN FOR CUTOFF CONTOURS

EMITTER FROM BEYOND LOCAL

STORED CUTOFF CONTOUR DATA

VRXEL=VRJEL .....

GOTO (662,660),LANE

662 DO 502 I=J_J2MAX

TAN=VTO(2,N)_RADVAL(1)

TANII=TAN-POTL(2,I)

VRXEL=MAXIFfVRXEL,TANII)

TANI2=TAN+POTL(2,1)

FOR PARTICLES RETURNING TO

POINT.
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I
l
I

I

I
I

I
I

i
I

4_

5O2

660

74O

741
661

742

743

744

745

746
747

748

749

75O

751

752
5O5

VRXlON=MAXIF(VRXION,TAN12}
CONTINUE

GOTO 661

DO 741 II=I,NPOT

IF((POT(2_II)-POTL(I,J))*CDIR)661,740,740
TAN=VTO(2,N)*POT(3,II)

TAN11=TAN-POT(l,II)

VRXEL=MAXIF(VRXEL,TANII)

TANI2=TAN+POT(1,II)

VRXION=MAXIF(VRXION,TANI2) ....

POINT(1,NN)=VTO(1,N) /(I.-RAD*POTL(I,J))
P=VRJEL-TANI

IF(P)?42,?42,?45

POINT(2,NN)=O.

IF(NN-11743_7439744

POINT (5,NN) =90.
GO TO 747
POINT(5,NN)=O.

GO TO 747

POINT(2,NN)=SQRTF(P)

IF(NN-1)743_743,746

POINT(5,NN)=57.296*ATANF(POINT(2,NN)/POINT(I_NN)}
P=VRJION-TAN2

IF(P)748,748,751
POINT(12_NN)=O,
IF(NN-1)749,TA9t750
POINT(15_NN)=90°
GO TO 505

POINT(15,NN)=O.

GO TO 505
POINT(12,NN)=SQRTF(P)
IF(NN-1)749,749_752
POINT(15,NN)=57°296*ATANF(POINT(12,NN)/POINT(1,NN))
GO TO (730,731)_KYLSPH
POINT(8,NN)=EXPPF(VTO(29N)+VRJEL)
POINT(18,NN)=EXPPF(VTO(2,N}+VRJION)
GOTO 732

731 CALL ERF(POINT(2_NN),POINT(89NNt)
CALL ERF(POINT(12,NN)_POINTtiS,NN_)

725 POINT(II,NN)=EXPPF( POINT(I_NN)**2}
732 IF(VRXEL-VRJEL)506,506,50?

THERE ARE NO RETURNING ELECTRONS

506 POINT(3_NN)=BITS

POINT(4,NN)=BITS

POINT(69NN)=BITS

POINT(7,NN)=BITS

POINT(?,NN)=BITS

POINT(IO_NN)=BITS

GO TO 511

SOME ELECTRONS RETURN

507 POINT(3,NN}=-POINT(2_NN)

POINT(4,NN)=-SQRTF(VRXEL-TANI)

POINT(6,NN)=-POINT(5_NN)

IF(NN-1)508,508,509
508 POINT(7,NN)=-90.

GO TO 510

509 POINT(7,NN}=57°296*ATANF(POINT(4,NN)/POINT(I.NN))
510 POINT(9,NN}=POINT(8.NN)

GO TO (733,734),KYLSPH

733 POINT(IO,NN)=EXPPF(VRXEL+VTO(2,N ))
GO TO 511
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734
511

* THERE ARE NO RETURNING

512 POINT(13,NN)=BITS

POINT(14,NN)=BITS

POINT(16,NN)=BITS

POINT(17,NN)=BITS

POINT(19,NNI=BITS

POINT(20,NN)=BITS

GO TO 517

* SOME IONS RETURN

513

514

CALL ERF(-POINT(4,NNI,POINTIIO,NN)I
IF(VRXION-VRJION)512.512.513

IONS

POINT(13,NN)=-POINT(12,NN)

POINT(IA,NN)=-SQRTF(VRXION-TAN2)

POINT(16,NN)=-POINT(15,NN)

IF(NN-I)514,514,515
POINT(IT,NNI=-90.

GO TO 516 ..

515 POINT(17,NN):57.296*ATANF(POINT(14,NN)/POINT(I,NN))

516 POINT(19,NN)=POINT(18,NN)

GO TO (735,736),KYLSPH

735 POINT(20,NN)=EXPPF(VRXION+VTO(2,N ))

GO TO 517
736 CALL ERF(-POINT(14,NN),POINT(20_NN))

517 IF(NN-2)518,536,537

518 NN=2

NNI=2

NNX(2)=502

N=502

GO TO 109

DO NOT SET A MINIMUM ANGLE INCREMENT BETWEEN THE FIRST

TWO POINTS. IT MAY BE 90 DEGREES

536 IF(POINT(5,NN))537,538_537

538 IF(POINT(15_NN))520t525,520

MINIMUM ANGLE IS _ DEGREES
537 IF(ABSF(POINT(5,NN)-POINT(StNN-1))-ANGTOL)5_gt539,540

539 IF(NN-2)538,538,520 .-

520 IF(ABSF(POINT(15,NN)-POINT(15,NN-1)}-ANGTOL)550,550,540

RADIAL VELOCITIES ON SUCCESSIVE POINT SHOULD BE BETWEEN 2/9 AND

1.5 TIMES LAST POINT.

550 IF(POINT 2,NN-1))521,400,521

400 IF(POINT 2,NN))540,551,540

521 IF(POINT 2,NN)/POINT(2,NN-I)-VELTOLI522,522,540

522 IF(POINT 2,NN)/POINT(2,NN'I)-VELTLLi540,551,551

551 IF(POINT 12,NN-I))523,401,523
401 IF(POINT 12,NN))540,525,540

52_ IF(POINT I2q_NN)/POINT(12,NN-I)-VELTOL)524,524,540
524 IF(POINT 129NN)/POINT(I2,NN-I)-VELTLL)540,525,525

* CRITICAL CORNER TESTS ON ELECTRONS

525 IF(POINT(4,NN)-BITS)526_534_526

* MINIMUM ANGLE INCREMENT FOR RETURNING ELECTRONS IS _ DEGREES,

534 IF(POINT(4,NN-I)-BITS)540,529,540

526 IF(ABSF(POINT(7,NN)-POINT(7,NN-I))-ANGTOL)527,527,540

* RADIAL VELOCITY RATIO TEST ON RETURNING ELECTRONS

527 IF(POINT(4,NN)/POINT(4,NN-I)-VE.LTOL)528o528,540

528 IF(POINT(4,NN)/POINT(4,NN-1)-VELTLL)5409527_529

529 IF(POINT(14,NN)-BITSI5309535,530

535 IF(POINT(14,NN-1)-BITS)540_600,540

* ANGLE INCREMENT TEST ON RETURNING IONS
530 IF(ABSF(ROINT(17,NN)-POINT(17,NN-1))-ANGTOL)531,531,540

* RADIAL VELOCITY RATIO TEST ON RETURNING IONS _

531 IF(POINT(14,NN)/POINT(14,NN-I}-VELTOL)5_2._5_2,540

-208--

I
I

I
I
!

I

I
I
I

I
I

I
I

I
I

I
I

I
I



ii

1

I
I

l
,i

II
l

I
I
il

I

1

1

I

1

i
1

I

532 IF(POINT(14,NN}/POINT(14,NN-1)-VELTLL)540,600,&O0
* CRITICAL CORNER TESTS ON IONS

CAN ANOTHER POINT BE INSERTED IF TESTS ARE NOT SATISFIED

540 IF(NNX(NN)-NNX(NN-I)-1)600,600,541
IF ALL TESTS ARE SATISFIED FOR ALL INTERVALS CALCULATE CHARGE DENSITY

600 IF(NN-NNI)601,610,609

ALL TESTS ARE SATISFIED FOR THIS INTERVAL, TRY THE NEXT.

601 NN=NN+I

GOTO 537
609 CALL ERROR
MAKE ROOM FOR INSERTION OF POtNT
541 IF(NNl-150)5529610,610

552 NLAST=20_NNI
NFIRST=20_NN-19-

542 POINT(NLAST+20)=POINT(NLAST)

NLAST=NLAST-1
IF(NLAST-NFIRST)543,542,542

543 NNNI=NNI
544 NNX(NNNI+I)=NNX(NNN1)

NNNI=NNNI-1

IF(NNNI-NN)545,544,544

545 NNI=NNI+I -..
IF(J+NN-3}55395539554

553 N=2
GO TO 555

554 N=(NNX(NN-I)+NNX(NN+I))/2

555 NNX(NN)=N

GO TO I09

CHARGE DENSITY CALCULATION

610 DNSEL=O.

DNSION=O.
GO TO (698,699),KYLSRH

698 DO 628 I=2_NN1
DTHETA=(POINT(5,1-1)-POINT(5,1}}/180.

TERMI=DTHETA_(POINT(8,1)+POINT(8,1-1))

GO TO (611,615,611,615)gINSIDE

611 IF(POINT(491)-BITS)612,618*612
612 IF(POINT(4,1-1)-BITS)614t6139614

613 TERM1=TERM1+(POINT(10,I)+POINT(9,1)}/180.*(POINT(6,1)'POINT(7'I)}

GO TO 618
614 TERMI=2.*TERMI+(POINT(IO,I)+POINT(10'I-1))/180°*(pOINT(?_I-I)

1 -POINT(?,i))

GO TO 618

615

616

617

I

618

621

622
623

624

625

626

627

IF(POINT(4,I)-BITS}614,616,614

IF(POINT(4,1-1}-BITS)617,618_617

TERMI=TERMl+(POINT(10,I-1}+POINT(9,I-1))/180-_(POINT(6tI-1)-

POINT(?,I-1)}

DNSEL=DNSEL+TERMI
TERM2=(POINT(18,1-)+ROINT(18,I-I})/180._(POINT(15tI-I)-POINt(15_I|)

GO TO (621,625,621,625),INSIDE.

IF(POINT(14,1)lBITS)622,628,622

IF(POINT(14_I-1)-BITS}624,6239624

TERM2=TERM2÷(POINT(20,I)+POINT(19,1))/180._(POINT(16'I)-POINT(17_I

I))

GO TO 628
TERM2=2._TERM2+(POINT(20,I}+POINT(20,I-I))/180._(POINT(17tI'I)

1 -POINT(17,1))

GO TO 628

IF(POINT(149I)-BITS}624_626_624
IF(POINT(1491-1)-BITS)62?9628,627

TERM2=TERM2+(POINT(20,I-1)+POINT(19,1-1))/180._(POINT(16_I_1)
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628
IF(J-l)

629 CURION=
CUREL=I
DO 635
IF(POIN

630 GRAND(1

631

632

63"_

634

635

636

637

638

639

1 -POINT(I7,1-i))
DNSION=DNSION+TERM2

629,629 ,652

i,

I:I,NNI
T(4,1)-BITS)631,6309631
,I):0,

GRAND(2.1)=O.
GO TO 632
V=SQRTF(POINT(I.I}**2+POINT(3_I)**2)
CALL ERF(V.VV)
GRAND(I.I):( - VV+1.1283Y*V*POINT(9.I)I
V=SQRTF(POINT(1.1)**2+POINT(4_II**2)
CALL ERF(V.VV)
GRAND(2.1)=( - VV+I.i2837*V*POINT(10.I)I
IF(POINT(14.1)-BITS)634.63B_634
GRAND(3,I)=O,
GRAND(4,I)=O,
GO TO 635
V=SQRTF(POINT(1,I)*_2+POINT(13,I)_*2) )
CALL ERF(V,VV)
GRAND(3,I)=( - VV+I°12837*V*POINT(19,I))
V=SQRTF(POINT(I,I)**2+POINT([4,I)**2)
CALL ERF(V,VV)
GRAND(4,I)=( - VV+l°I2837*V*POINT(20,I))
CONTINUE
DO 651 I=2,NN$
GO TO (636,644,636,644),INSIDE
IF(POINT(k,I)-BITS)637,640,637
IF(POINT(k,I-1)-BITS)639,638,639

640
645
641
642

643

2 (COSF(POINT(I
GO TO 651

644 IF(POINT(4,1)-BIT

646 IF(POINT(4,1-1)-B

647 CUREL=CUREL+(GRAN

1 /57.296)-COSF

648
649
650

65]

699

CUREL:CUREL-(GRAND(I,I)+GRAND(2,1))/2.*(COSF(POINT(6,1)/57.296)
I -COSF(POINT(7,I)/57°296))

GO TO 640

CUREL=CUREL-((GRAND(1,1)+GRANDI1,I-1))*(COSF(POINT(6,1)/57.2961

1 -COSF(POINT(6,1-1)I57.296))-(GRAND(2,1)+GRAND(2_I-1))

2 *(COSF(POINT(7,1)/57.296)-COSFtPOINT(7,1-1)/57.296)))/2.
GO TO (645,648,645,648),INSIDE
IF(POINT(14,1)-BITS)641,651_641

IF(POINT(14,I-1)-BITS)643,642,643

CURION=CURION-(GRAND(3,1)+GRAND(4,1))/2.*(COSF(POINT(16,1}/57.296)
1 -COSF(POINT(iT,I)/57.296))

GO TO 651

CURION=CURION-((GRAND(3.1)+GRAND(3.1-1))*(COSF(POINT(16.1)/57.296)
1 -COSF(POINT(16.1-1)/57.296))-(GRAND(4.1)+GRAND(491-1)),

7.1)/57.296)-COSF(POINT(17_I-I)/57.296)))/2°

S)639,646,639
ITS)647,648_647

D(I,I-I)+GRAND(2,1-i))/2.*(COSF(POINT(6,1-1)
(POINT(7,1-1)/57°296))

IF(POINT(14,1)-BITS)643,6499643

IF(POINT(14,1-1)-BITS)650,651,650

CURION=CURION+(GRAND(3,1-1)+GRAND(4,1-1))/2.*(COSF(POINT(16,1_1}
1 /57.296)-COSF(POINT(17,I-1)/57°296))
CONTINUE

CUREL = CUREL - (1.-COSF(TCRIT))

CURION = CURION - (I.-COSF(TCRIT))
GO TO 652

DO 700 I=2_NN1

TERME=2.-(POINT(8,1)+POINT(8,1-1})
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701
702
703
70a.
705
706

700

707

710

711

712

713

714

727

708

709

719

717

718

715

716
720

721
722
723

724
652
127

89

9O

91

92

TERMI=2.-(POINT(18,1)+POiNT(I8,I-i)}
IF(POINT(4,i)-BITS)701,703,701

IF(POINT(4,1-1)-BITS)702,703,702

TERME=TERME+POINT(IO,I)+POINT{IO,I-I)-POINT(9,1)-POINT(9,1-1)
IF(POINT(14,1)-BITS)704,706,704

IF(POINT(I_,I-1)-BITS)7OSt706tT05

TERMI=TERMI+POINT(20,I)+POINT(209I-I)-POINT(19,1)-POINT(19,1-1)

DX= .5_(POINT(ll,I-1)-POINT(11.I})
DNSEL=DNSEL+TERME_DX

DNSION=DNSION+TERMI_DX

FACT=EXPF(POTL(2,J))

DNSEL=DNSEL_FACT

DNSION=DNSION/FACT

IF(J-I)707,707,652

CUREL=I.

CURION=I.

IF(POINT(k,I}-BITS}710,7119710

TERMEE=EXPPF(+POINT(4,1}_2)

GO TO 712

TERMEE:O.

IF(POINT(14*l)-BITS)713,714,713

TERMII=EXPPF(POINT(14,1)_2)
GO TO 727
TERMII:Oo

DO 724 I=2,NN1

DX= .5_(POINT(II,I-1)-POINT(I1,I))

IF(POINT(4,1}-BITS)708,7179708

IF(POINT(4,1-1)-BIT5)709,715,709

TERMEI=EXPPF(POINT(4tl}_2)

TERME = 2,-TERMEI+TERMEE

TERMEE=TERMEI

CUREL:CUREL-TERME*DX
IF(POINT(4,1-1)-BITS)718,715,718

O.TERMEI =

GOTO 719

IF(POINT(

IF(POINT(

TERMII =

GOTO 723

IF(POINT(
TERMII :

14,I)-BITS)716,721,716

14,1-1)-BITS)720,724,720
EXPPF(POINT(14,1)_2)

]4,I-I)-BITS)722,652,722
O°

TERMI = 2.-TERMII-TERMII

TERMII : TERMII

CURION : CURION-TERMI*DX
CONTINUE

TCRIT : TCRIT _ 57.296

IF(NWRITE-NWRMAX)89,87,g8

IF(ABSF(POTL(1,J}-POTL(1,1))-ABSF(WRITE(NWRITE)-POTL(1,1)))
1 98,90,90

DO 95 L = 1,2

K = (L-I)_IO+i

N1 = 1

N2 = NN

WRITE(3,1OOO)LABELI(I,KYLSPH),LABELI(2,KYLSPH),(LABEL{I,L),I

1POTL(1,J),(MONTH(I},I=lt_),POTL(2,J)_TCRIT,DNSEL,DNStON

IF(NN-40)?I,91,92
KPRINT=I

LPRINT=I

GO TO 93
KPRINT=NN/40+I
LPRINT=2
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93 WRITE OUTPUT TAPE 3.1001.(POINT(K+I.II.POINT(I.Ii,POiNTiK+4.1).
1 POINT(K+7.1).POINT(K+2.1).POINT(I.I)gPOINT(K+591}.POINT(K+8.1i

2t POINT(K+3.1}.POINT(Itl).POINT(K+6.I}.POINT(K+9.I).I=NI.N2_KPR
31NT) .....

GO TO (95.94).LPRINT

94 NI=NN

N2=NN

LPRINT=I

GO TO 93
95 CONTINUE

IF(KPLOT)?6_97_96

98 CALL PLOT
97 NWRITE=NWRITE+I

98 RETURN

1000 FORMAT
RESTORE

-X -ADIODE

XUR DATA -

SPACE
RADIUS

POTENTIAL

CRITICAL ANGLE

ELECTRON DENSITY

ION DENSITY

SPACE
LOWER LIMIT FOR INWARD

XARTICLES UPPER LIMIT FOR

SPACE

VR VT ANGLE

XY VR VT
SPACE

END OF FORMAT

I001 FORMAT

-X -OPF4 -F5
XIPG3 -OPF4

END OF FORMAT

END

POTENTIAL DISTRIBUTION STUDY - CUTOFF

-A DISTRIBUTION

-F4
-_F4

-F2
-F4
-F4

CALCULATION DATE

BOUND PARTICLES LOWER LIMIT FOR
OUTWARD BOUND PARTICLES

ENERGY VR VT

ANGLE ENERGY

VELOCITY CONTO

-I/'I/-I

OUTWARD BOUND P

ANGLE ENERG

-F2 -IPG3 -OPF4
-F5 -F2 -IPG3

-F5 .-F2
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*RADFCNO0

SUBROUTINE RADFCN (KPOT,I,II,RATIO)

COMMON POINT,POTL,VTO,MONTH,J,WRITE,NWRITE,NWRMAXgKPLOT,

i DNSEL,DNSION,CONSTI_CONST2_ RAD,POTI,POT2,CUREL,CURION
2 ,JMAX,INSIDE,DEBY2_DEBYI,LGOTO,J2MAX,RADVAL

3 ,ENRGMNtKEND,CYLSPH_KYLSPH,ANGTOL,VELTOL,VELTLL,POT,NPOT

DIMENSION POINT(20,150),POTL(8,1001), MONtH(_)

DIMENSION WRITE(20),POTI(IOOI)gPOT2(IO01)

DIMENSION VTO(2,502),RADVAL(IOO1),POT(3,30)
12=11+1

GO TO

I POTL(1

RADVAL

DO 3 I

GO TO

2 POTL(1

3 RADVAL
DO 18

18 POT(3,

GO TO

4 POTL(1

RADVAL

DO 6 I
GO TO

5 POTL(1

6 RADVAL

DO 17

17 POT(3_

GO TO
7 POTL(I

RADVAL

DO 9 I

GO TO
8 POTL(1

9 RADVAL

DO 15

15 POT(3,
GO TO

10 POTL(1
RADVAL
DO 12
GO TO

11 POTL(1

12 RADVAL

DO 16

16 POT(39

13 RETURN

END

(1,#,7,10),INSIDE

,1)=1.

(i)=0.

I:2,J2MAX

(2,3),KPOT

,II)=i.-(1.-RAD)/RATIO_FLOATF(II-I)

(II)=I./POTL(1,1I)_2-1.
II=I,NPOT

II)=I./POT(2,11)-I,
13

,I)=0.

(I)=0.

I=2 ,JMAX

(5,6)gKPOT

,II)=I.+(RAD-I.)/RATIO_FLOATF(II-Ii

(II)=I.IPOTL(1,11)_2 -I.
II=ItNPOT

II)=I./POT(2_II)**2_I.

13

,I)=0°

(I)=0.

I=I2,1

(8,9)_KPOT
,II}=FLOATF(II-i)/RATIO

(II)=1./(I.- RAD *POTL(1911)i*_2-1.

II=i,NPOT

II)=1./(1.-RAD*POT(2911)Jw*2-1.

13

,1)=0.

(I)=0.

II = 12,1 .-

(11,12),KPOT

,II)=FLOATF(II-II)/RATIO+POTL(1911)

(II)=1./(I.- RAD *ROTL(1911))**2-1.

II=I,NPOT

II)=I./(I.-RAD*POT(2tII))**2-i.
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_BNNI

B CALCULATION

B WILL BE CALCULATED ACCORDING TO THE
VALUE OF INDICATOR K.

B = BNNI(ALPHA,K}

WHERE ALPHA = (THETA +/_ MU).

K MUST = 0 IF ALPHA LESS THAN 45 DEGREES.
K MUST = I IF ALPHA GREATER THAN 45 DEGREES.
K MUST = 2 IF ALPHA = 90 DEGREE_

1 FUNCTION BNNI(ALPHA,K)

2 IF (K - 1) _,_,5

BNNI = (COSF(ALPHA))/(SINF(ALPHA))
GO TO 6

4 BNN1 = (SINF(ALPHA))/ICOSF(ALPHA))
GO TO 6

5 BNN1 = 0°0

6 RETURN

END (0,1,0)
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*COEFT O0

SUBROUTINE COEFT(Y,Y2DOTgDX,KgPX,QX,J)
DIMENSION Y(1),Y2DOT(1)

J5:J

J4:JS-K

J3:J4-K
J2:J3-K

J]:J2-K

JO=JI-K -.

CCI:(Y2DOT(J3)-Y2DOT(J1))/(Y(J3)-YiJ1))
CC2=(Y2DOT(J5)-Y2DOT(J3))/(Y(J5)-YtJ3))
DX2=DX_2
Al=2o-lo333333_CEl_DX2
Bl=2.-.666667*CC1_DX2
CI=Y2DOT(J2)-Y2DOT(JO)+(Y2DOT(JI)-Y2DOT(JO)}_DX2/2._CC1
A2=4.-lO.666667_CC2_DX2
B2=8.-10.66666?*CC2_DX2
C2=Y2DOT(J4)-Y2DOT(JO)+DX2*(4,5_Y2DOT(JO)-2.5_Y2DOTiJ1)-I.5_

1 Y2DOT(J2)-,5_Y2DOT(J3))_CC2
DEN=AI*B2-A2eB1
PX:(CI*B2-C2*B1)/DEN

QX=(AI_C2-A2_C1)/DEN

]. RETURN
END
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_BLAESS

I0

SUBROUTINE TO IMPROVE INTEGRATION BY BLAESS METHOD
SUBROUTINE BLAESS(DTIME)

COMMON POINT'POTL,VTO,MONTH,J,WRITE,NWRITE,NWRMAX,KPLOT.
1 DNSEL,DNSION,

2 ,JMAX,INSIDE,
3 ,ENRGMN

DIMENSION POINT(20,150),POTL(8,1001), MONTH(3)
DIMENSION WRITE(20),POTI(IOO1)_POT2(iO01)
DIMENSION VTO(2,502),RADVAL(502)
DIMENSION BITS(1)

DX=POTL(3,J-2)-POTL(3,J-5)

CALL COEFT(POTL(3,1),POTL(7,1),DTIME,8,PX,QX,(J-II*8+I)
PXXI'PX/2./DTIME

/3.

./DTIME**2

/4.

PXX2=PXXl

QXXI=QX/6

QXX2=QXXl

I1=J-4

DO 11 N=I
DTIMEN=DT

CONSTI,CONST2, RAD,POTI,POT2,CURELgCURION
DEBY2,DEBYI,LGOTO,J2MAX,RADVAL

_5
IME*FLOATF(N)

POTL(StI1)=POTL(8_J-5)+POTL(7_J-5)_DTIMEN+PXXI_DTiMENw_2
I+QXXl_DTIMEN_3

POTL(3,I1)=POTL(3_J-5)+POTL(89J-5)_DTIMEN+POTL(79J-5)/2._
1DTIMEN_2+PXX2_DTIMEN_W3+QXX2_DTIMEN_4

11 II=11+1

16 RETURN

END
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*LCOUNT

*FUNCTION SUBPROGRAM TO COUNT ROWS IN A
*2- DIMENSIONAL ARRAY,
* N19 = COLUMN TO BE COUNTED

N20 = MAXIMUM LENGTH OF ARRAY
* XX = NAME OF ARRAY

* N21 = NUMBER OF COLUMNS IN ARRAY
I FUNCTION LCOUNT(Nl?tN20_XXtN21)

DIMENSION XX(1)
L17 = N21
BITS = 1,7014118E+_8

3 LCOUNT : 0
N22 = N20*N21
DO 6 i=N1?,N22oN21
IF(XX(1)-BITS)6_Tt7

6 LCOUNT = LCOUNT+I
? RETURN

END
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*COEFFTO0 CALCULATES COEFFICIENTS OF EQUATION

SUBROUTINE COEFFT(ARRAYtDIR.UN.VN.CN)
DIMENSION ARRAY(2)

IF(ABSF (DIR)-°7854) 10,10 _12

10 UN=-BNNI(DIR,O)

VN=I •
CN=ARRAY(2) ÷UN_ARRAY (I)

I 1 RETURN

12 IF(ABSF(DIR )-2.3562 )16_16t 13

13 IF(DIR) 15_,14_14 ,,
14 DIR=DIR-3.1416

GOTO ]0

15 DIR=DIR+3.1416

GOTO I0

16 VN=-BNNI(DIR _1)

UN=I°
CN=ARRAY( 1 )+VN_ARRAY (2)

GOTO 11

END
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*QIRFX03
SUBROUTINE @IRE (XgEtXKItXK2tXK39XK4_TOL,XJMAXtXJgGOWHER)

* JULY 27_ 1961
* QUADRATIC INTERPOLATION ROOT EVALUATION

DIMENSION xJ(8}
DIMENSION XX(8)gEE(4)

EQUIVALENCEiXX(5),EE)

, X= THE GUESS OF THE Root

* E= ERROR (Y-YD¿
* XKI_XK2_XK3tXK4_ ARE CONSTANTS
* TOL = TOLERANCE
* XJMAX= MAX NUMBER OF TRIAL ROOTS TO TRY _.
* XJ= AN 8 ELEMENT VECTOR CONTAINING THE ITERATION CTR,_ THE _ POINT
* HISTORY AND AN INDICATOR
* GOWHER= A FORK TO DETERMINE IF E LESS THAN OR GREATER THAN TOL

10 IF(XJ)3300_tl,90
* XJ=O INITIALIZE
* CA= GREATEST POSITIVE ERROR
* EB= GREATEST NEGATIVE ERROR
* EC= ERROR FOR MtDDLE POINT
* XA= VALUE OF X CORRESPONDING TO EA
* XB= VALUE OF X CORRESPONDING TO EB
* XC= VALUE OF X CORRESPONDING TO EC

1l CA=O,
12 EB=O.

13 EC=O.

14 XA=O.
15 XB=O.

16 XC=O.

80 GO TO 100
* XJ IS POSITIVE

90 XA=XJ(2)

91XB=XJ(3)

92 XC=XJ(4)
93 EA=XJ(61
9_ EB=XJ(7)

95 EC=XJ(8)

DO 96 N=1_3

XX(N)=XJ(N+I)

96 XX(N+4)=XJ(N+5)

Xl=X

XTNT=X
XX(4)=X

EE(4)=E

* ADD 1 TO COUNTER

100 XJ=XJ+I.

I01 IF (XJ-XJMAX) 102t3300_3300
102 IF(ABSF(E}-TOL)3400,200_200

* E GREATER OR = ToL
200 IF(EA*EB)1200_300ti200

* (EA)(EBI=O
300 IF(E)7OO_4OOt400

* NEW GUESS AT ROOT WHEN E GREATER OR =0
400 EA=:E'

EE(lt=E
XX(1)=X
XA=X

500 XI=X+XKI*E+XK2
600 GO TO 900

* NEW GUESS AT ROOT WHEN E LESS THAN 0
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700 EB:E
EE(2)=E

XX(2):X

XB:X

800 XI:X+XK3*E+XK4
900 IF(EA*EB)IO00,3200,1000

* NEW GUESS AT ROOT WHEN ROOT IS SPANNED

1000 Xl=QIREX(1,2,EE_XX)

1100 GO TO 3200

* (EA)(EB) NOT ZERO

1200 IF(XA-XB)I202,1201,1201

1201 XK=I,

LANE=I

KK=-I

GO TO 1203

1202 XK=-I,

LANE=2

KK=I

1203 IF(EC)I399,1300,1399

* EC:O
1300 EC=E

XC=X

IF(E/EA)1301,1301,1302

130] XTNT=QIREX(4,1,EE,XX)

GO TO 2700

1302 XTNT=QIREX(4,2,EE,XX)
GO TO 2700

1399 GO TO(1400t1401),LANE

1400 XX(1)=XB

EE(1)=EB

XX(4)=XA
EE(4)=EA

GO TO 1402

1401 XX(1)=XA
EE(1)=EA

XX(4)=XB

EE(4)=EB

1402 IF(X-XC)1404,140391403

1403 XX(3)=X
EE(3)=E
XX(2)=XC

EE(2)=EC

GO TO 1405

1404 XX(3)=XC

EE(3)=EC

XX(2)=X

EE(2)=E
1405 IF(EE(1)/EE(2))1406,1407,1407

1406 II=2-KK
XTNT=QIREX(I,2,EE,XX)

GO TO 1413

1407 IF(EE(3)/EE(4))I408ti409,1409

1408 II=3-KK

XTNT=QIREX(3,4,EE,XX)

GO TO 1413
1409 IF(ABSF(EE(4))-ABSF(EE(1)))1411,1411t1410

1410 II=2-KK

GO TO 1412

1411 II=3-KK
1412 XTNT=QIREX(2,3,EE,XX)

1413 XA=XX(II)
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I

I

I

I

l

I

I

I

I

I

I

I
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I

I

i

I

2700
2800
2810
2820
2821

2900

3102

3108

3103

3104

3105
3106

3300
3301

3302
3200

THE
3400
3410
342O
3430

* THE
3500

3510

EA=EE(II)
II=II+KK

XC=XX(II)

EC=EE(II)

II=II+KK

XB=XX(II)

EB=EE(II)

DI=(EC-EB}/(XC-XB)

DI2=(((EA-EC)/(XA-XC))-DI)/(XA-XB)

IF(D12)2820t2821,2820
IF(1-E-3-ABSF((XA-XB)/(D1/D12-XC+XB)))2900,282192821
XI=XTNT
GOTO 3200
D13:(D12*(XC-XB)-D1)**2-4o*D12*EB
IF(D13)3103t3102,3102
Xl:(D12*(XC-XB)-D1+XK*SQRTF(D13))/2./D12+XB
IF(MAXIF(ABSF(X1-XA),ABSF(Xl"XB))-ABSF(XA-XB))3200o320093108
XI=XTNT
ASSIGN 3105 TO MMM

WRITE OUTPUT TAPE 3_I_TOLgXJ(1)tX,E_(XX(I)_EE(I)tI=I_4),Xl,XJ(5)
GO TO MMM,(310593302)
CALL ERRORA
X=XTNT
GO TO 3400
IF(EA*EB)3103,3301_3103

ASSIGN 3302 TO MMM
GO TO 3104
CALL ERROR
X=X1

GOWHER=6HGOBACK

GO TO 3500
ROOT HAS BEEN FOUND
GOWHER=4HGOON
XJ(5)=XJ
XJ=O,

GO TO _510

ROOT HAS NOT BEEN FOUND

XJ(5):XJ

XJ(2)=XA
XJ(3)=XB

XJ(4)=XC

XJ(6)=EA

XJ(7)=EB

XJ(B)=EC

RETURN

FORMAT

RESTORE

SUBROUTINE QIRE

-IPE2 IN
FAILED TO CONVERGE WITHIN THE TOLERANCE LIMIT
-OPFO LOOPS

ARGUMENT ERROR
-lPE5 -E5ENTRY TO SUBROUTINE OCCURRED WITH

SPACE

RECENT CONVE2GENCE HISTORY WAS

SPACE

EXIT FROM SUBROUTINE OCCURRED WITH
SPACE _'

LOOP COUNT -OPFO

-E5 _E5
-ES -_S
-E5 -E5
-E5 -E5
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END OF FORMAT
* QIRE-LAST CARD

END(O,I,O)
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*QIREX03

FUNCTION QIREX(II,I29EE,XX)
DIMENSION EE(4J,XX(4)

QIREX=(EE(II)*XX(I2|-EE(I2)*XX(II)I/(EE(II)-EE(I2))
RETURN
END
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*DETER

DETER SUBROUTINE

THIS SUBROUTINE MAY BE USED TO

CALCULATE X, Y_ MACH NO., AND THETA

CALL DET_ER(XA,XB,VA,VB_UA,UB_RESULI_RESUL21

WHERE RESULt = X OR MACH

AND RESUL2 = Y OR TH_TA

SUBROUTINE DETER(XA,XB,VA_VB,UA,UBtRESULI_RESUL2)

RESUL1 = (XA*VB - XB*VA)/(UA*VB - VA_uB)

RESUL2 = (UA_XB - UB_XA)/(UA*VB - VA_UB)

RETURN

END (0,I,0)
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ADDENDUM

IDENTIFICATION:I
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I
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I

I
I

I
I
l

I

Title: Standard Error Procedure

Source Language :

Application: 7090 FORTRAN

Author: Dorothea S_ Clarke

Unit: CTD

Installation: General Electric - Evendale

Date: April 1960

During the September 1958 SHARE XI meeting the FORTRAN Standards

Committee proposed a standard error detection procedure for FORTRAN IL

IBM modified the compiler and ECO has put it into effect. This allows the

programmer to call an ERROR subroutine which will identify the location of

the error, back trace the flow through subroutines to the main program and

then continue either to the next statement or to the next case.

The calling sequences of the following subroutines will be affected.

I. Function definition subroutines compiled from

function definition statements.

Z. Library function subroutines.

3. FUNCTION subprograms.

4. SUBROUTINE subprograms.

Changes in the calling sequences to the following subroutines are not included;

I. Closed subroutines computing index values.

Z. Library subroutines used to accomplish input and output.

The standard error detection feature will lengthen the calling sequence by the

following two instructions at the end of the calling sequence:

NTR _2, 0, A

PZE C. O, B

where A equals the external formula number of the statement producing the

calling sequence, If the statement producing the calling sequence was not

April 1960 AFM60- 3. I
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(Addendum)

assigned a statement number, then A equals the external formula number of

the last preceding source program statement with a statement number. If no

external formula numbers were assigned to statements, then A equals 0.

B equals the internal formula number of the statement producing the

calling sequence.

C depends on the manner of occurrence of the calling sequence. If the calling

sequence occurs in a function definition statement, then C equals (77777)8.

If the calling sequence occurs in a subprogram headed by a SUBROUTINE or

FUNCTION statement, or in a library subroutine, C equals $ + 2 which is

the location in the prologue of the contents of index register 4. If neither of

these conditions apply or the subroutine was called from a main program,

then C equals 0.

The compilation of FORTRAN II subprograms headed by SUBROUTINE and

FUNCTION statements will be altered in the prologue by the addition of

one BCD word, the name of the subroutine. The prologue will then appear

as follows:

(Entry point to Subroutine)

HTR

HTR

HTR

BCD

SXD

SXD

SXD

1, NAME

$, 1

$+i, Z

$+2, 4

The program card preceding each subprogram will be adjusted to reflect both

the subprogram's increased length and that the entry point is one location

higher than the subprogram compiled without the standard error procedure.

The additional words compiled in the calling sequences and prologues will

permit an error program, called at object execution time, to determine the

internal and external formula numbers of the program statement calling

the error program. If this staternent calling the error program occurs in

a SUBROUTINE or FUNCTION type subprogram or a library function sub-

routine, then the name of that subprogram is known. If the calling of the

error program occurs in a subroutine or subprogram., the additionally

compiled words give the needed information to determine the statement in

a higher level program which called the subroutine or subprogram. This

method is used to back trace through any number of levels of subprograms

April 1960 AFM 60- 3. Z
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{Adden_lum}

out to the main program. It should be noted that. although the function

definition subroutine does not have a name that can be printed_ the statement#s

external formula number identifies the subroutine unambiguously.

In a FORTRAN II coded subprogram the programmer has two options:

(1} He may call the error program by the statement

CALL ERROR

which returns to the initial entry to calculate the next case, or (2)

CALLERRO_

which returns to the next statement after the CALL. The proper calling

sequence will be compiled and the name ERROR or ERROR.A placed in the

transfer list. If the CALL statement is assigned a statement number, the

location of the error is easily located by the programmer.

Any SAP coded subprogram that can call the error program directly or

indirectly should also call other programs by a calling sequence followed

by the above discussed NTR (TXI) and PZE instructions. The A and B can

be arbitrarily assigned by the programmer which may be used to designate

the type of error if the subprogram has multi-error detection. The C should

be zero if the SAP coded routine is the main program; otherwise, C should

give the address of a location L where index register 4 of the TSX to the

subprogram is saved. The BCD name of this SAP coded subprogram should

be in L+I. It is suggested that the SAP coded program use a prologue the

same as those used for FORTRAN subprograms. If the error program can

be called directly, ERROR or ERRORA must be included in the transfer list.

When ERRORA is usedp provision for the return must be included.

ERROR SUBROUTINE

An error subroutine has been prepared which will back trace the flow of a

problem utilizing the additional compiled instruction of the FORTRAN II

standard error detection procedure. When an error is encountered and the

error routine is called, comments as to flow are written on the peripheral

output tape after restoring the page, for example,

April 1960
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AN ERROR HAS BEEN FOUND AT OR NEAR

I

I
I
I

EXTERNAL FORMULA NO. INTERNAL FORMULA NO. OF EXP

" " " 3157, " " " ZI3, OF

" " " II, " " " 4, OF CBDA

" " " 125, " " " 314, OF MAIN

THE END

NOTE: The title of the subprogram is listed whenever possible. The space for

the title is left blank when the subprogram is from a function definition state-

ment. When it is a main program the title MAIN is supplied.

The ERROR subroutine will trace back to the main program or 15 subprograms,

whichever occurs first. The comment THE END is printed, the page restored,

and sense light 1 turned on. If entry was by way of ERROR, control is then

returned to the transfer instruction in the BSS-load to re-enter the program for

another case. If the programmer does not wish to restart from the beginning

he must provide an indicator and a test at the beginning. The test must be to

decide if this is a re-entry after an error was detected (sense light 1, etc. ),

in which case, transfer around the initialization. (Light 1 must be off before

loading. ) If entry was by way of ERRORA, control is returned to the next

statement after the CALL ERROKA. It is then the programmer's responsi-

bility to act accordingly. Library function subroutines arbitrarily use ERROR

to return to the initial entry to the main program. If it is necessary to avoid

this, the programmer must test any arguments for error before entering the
subroutine s.

ERROR is in the FORTRAN II library of subroutines. Output is on the

pe riphe ral output tape.

LIBRARY FUNCTION SUBROUTINES

All of the library routines which can utilize an error return have been modified

to do so. Below are listed the subroutines, origin, space required, and timing.

Internal and external statement numbers will be blank unless otherwise indicated

to distinguish different types of errors.

April 1960
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ERROR I
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I
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I
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I

I

I
I
I

I

Name

LOG

EXP

EXP(I

EXP(Z

EXP(3

SIn/COS

SQRT

DIP

April 1.960

Origin,,

FORTRAN

Storase

57

FORTRAN 56

FORTRAN ' 49

FORTRAN

FORTRAN

Modified GE

GE

GE

58

125

93

31

-231-

Approx.

Timing

Zo 6 ms

Z. 0 ms

variable

variable

5. 1 ms

3.6ms

Z. 0 ms

variable

Error Codes

IFN = Blank if X = 0

IFN= 1 if X<0

IFN = 1 if 0##0

IFN = 2 if I#*(-J)

IFN = I if 05_0

IFN = Z if 0$,_(-A)

Same as EXP and LOG

IFN = 1 if COS

IFN = blank if SIN

IFN = error code

EFN = I000 x card

count + colurnn

nurnbe r

AFM00- 3. 5



I suB_rrn_
I I ¸ mll n

IDIgNTIFiC_T_0N;

I _ II I I . l

•'fla.: DINe,:: DeCbnSl ,;=put.
So'_'co _e : F,AP

I _,_t!on. • 7090 ],ORT_,m

].1 Ul l I " In I' . _ . L _

i UnitZ Co_. Techniques DevelopmentIutallAtio_ General Electric = ,L'v'ond_,,l.o..
........... 1961•D, ap_:o- 1,, Jm.mu,.r'r ,:

._) I I . . . Into. . ( I II I

Tho DING input program,, which loads frmn the pez_oral Input tapo, convoz4_

I mud stores intezers, fie•finE pOin_ data, and alphabeUc dam or octal I,nsCruc'ldA_U_
Col_m_n I, of each ds_ card, Is reserved for_cont_ol Inform_tlo_ which

ci_s whether the dam is to be canvertod to n_nertc or bLnaJ_F.codod clscimal_

I Other controls al_re end-of-record and _ond,.of-_te. Taktnz precedence tar.or

column I control_, _rLablo names are examined to determln_ Intezor or

I _O&_JI 8 pOJJ_ cc_Yerelo_. -The cL•_L cs_dl I_ILy be let up for _ mlinbor offields, limited only by the 72 columu on the card.

U8AGE:
|

CaJJJ.u K Sequences

rc_ DING (8Yh(TAB' _OF)

SYMTAB is the input table generated by • FOI_TRJLN

TAJ3LE statement. (See Example . pa£e 2)

_OF is sm end.of-file pa_ra_neter with the gollowin__4j
c0nnotatton_:

I for DIN(3: IOF _ 0, DIN(3 calls EXIT on lgOFIOF = 0, DING stores J; 1 on l_OF and rebarns
to caller

I
I

I
I

for calling program upon return from
• DING:

IOF = + 1 if control card _OF encountered

IOF = - 1 if physical EOF encountered

Jsmu_ry .19 61 FSR61-17. 1
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ii i I i i iii I . _- +

DnmmmS X,6YUT e{,,,)

,c L n O [SYMT+ S,
,mYMTAB, = table o+ input variables., l, .Z. ,.

n . number o+ variables in table I

m,2 3n+l

IOF -_ EOF parameter I

". ± +:- I + • '" • + " " I

.C0_/UJ_ 1, tl relined for control punch el, Listed below are the vltrio_tl "
II

•OontrO1 punchee permitted by DING:

.De liberation I.Sr=b, 

0

Z

3

4

5

B

C

D

E

H

o tZero)
2

3

4

5

8

8.0.

8-3

8-4

9

12

1Z.2

Octal Instruction I

Data is Binary Coded Decimal stored
I

ascending order

is Floating Point IData
Data is Fixed Point

Data is Binary Coded Decimal stored

descending order I
End-o£-File when followed by 5 blanks

Octal Instruction-, End-of-Record i

Data is Floating .Point - End-of-Record |
Data is Fixed Point - End-of-Record

11

This card is to be ignored

Conversion mode is continued from ]
I

previous card--fir+t nur_ber on card

is absolute storage location I
Data is Binary Coded Decimal --first I

number is an absolute storage location

Data is Floating Point-- first number I
is an absolute storage location J

Data is Fixed Point -_ first number is

&n absolute storage location

Data is Binary Coded Declrnal -- first

number is an absolute storage location

Conversion mode is continued from the I
J

previous card -- first number is an j

absolute storage location -- end-of_renord

IZ-3

1Z-4

IZ-5

12-8

8

Y

=

9

+

January 'l 961 FSR61-17.2
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I _i II I Ill "'" " " " ill " I I

II-s-Z None,

12_8_3

I . . I • I I _!. I. , .I o "I i , ._ .... Jll J '

field is an,absolute .l_r&jo .!seaSon ..
end-of*record

Data is FloAtinl Point -- first field is as.
absolute storage location -- end of record

I IZ-S-4 ) Data is Fixed Point --firSt field is an
absolute etorFfe location =.--end Of _eeord

• B],al.k The conversion mode is continued fro_a the

I prevtomJ, card, with tho.e_e]?elon,o_!
control 0 (Zero).

I

I

 ocatio 
Whenaver there/Ca 12 punch in column I, the next number on the cazd meet

b41_-an a_solute location. DING will then.store all the data that follows in

descend£n I order with the first lZlece Of daLI stored at this location.

I

I

I

V_rlabXe Storaja B.efe,rence :

Whenever a vat/able is found,, on the data card, DING searches through the

List of Va_m nd equates it to an absolute storage location. .The varis_ble

may appea_ a_ywher_ on the card with the exception of column I. and ali

data that follows a_e stored with reference to the absolute 1scat/on.

In conjunction with.tho table look-up feature, the variable name is extruded.

Xg the first character is I, J, K, L.M, or N, the conversion mode is sot for

I integer conversion. If the first ch_acter is not one of these special
characters, the conversion mode is set for floating point. This procedure

will take precedence over the "3, or "4" control punch in column I. Noxwaally,

I control punches (3, 4) will not be required except when it is desired to load
n_uaeric data follow/he BCD data. This feature allows integer and floatlns

• point data to be loaded from the same card.

I Dat_:

I

I

Flo&tin E Poi_tl - A 3 punch in column I indicates th&t all the data
o'A t_is _ card are to be converted to 704 floating point notation. There

are a variety of acceptable ways .to punch floating point data, e.g. :

I
January 1961 FSR61-17.3

I
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............. .a_hl'i - ,L- •,J

8,, 11,6 _$

+ 8116001-2
811600,.2

I I t l "l ' ' ;

I

I
I
I
I
sl

.The plus !ign on the data is optional. The exponent is sopara_, d •

£zOm tl__s& by either a/, ÷, or - .i[n. A blank or A co=_.ma
g

tells DING that this. is the end of the number.

LFixod P_t,_ A 4 punch in column 1 indicates that allVd&taL on.thiS U

et',_ _i_°_bo converted to a binary integer and stored in ',._

•de_r, oment::flold of the current absolute storage location. The I

d_ta on the: :card must be punched as an integer and may be
preceded by a siena. The absolute value of the integer muster I

exceed 31767. T_ie end of the integer is indicated by a ,hlank_ Oz I
• a cornn_a.

I
Bypassing 8torag6 Lo, c,a.tions:- An equal sign irnmediatelyfQllow_d U
by a bla_k or_ comma causes the storage location to be decreased

by one. An integer (n) immediately preceding the equal sign _auees m

the storage location to be decreased by n. This. feature enables the |
loading of data into scattered locations without continually defining

the storage location.

Octal Instruction Cards: - If column 1 contains a zero punch, this
indicates to DING that this is an octal instruction card. E_ch octal

instruction card must have a _ero punch column 1, an octal address

in columnx 7 - 11, a sign and IZ octal numbers of the instruction
in columns lg - 30.

Binar}r Coded Decimal Dat_: - If column I contains a 7. Or a 5 punch_
the data on the card are itore_d in six-bit binary coded decimal _[o_

If there is also a 12 punch in column 1, then the first information

must be the absolute 8torage location. If there is no 1Z punch in
column I, the first character of the next field is exarnlned to determine

if it is numeric or alphabetic. If alphabetic, the field is interpreted

to be the va-ri_ble defining the storage location. Following the eto_agb
reference, and separated from it by either a blank or a comma, is

the integer N where-N x 6 is the number of BCD characters to be storbd.

I

I

I

I

I

I
January 1961 FS1t61- I?. • I
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If the first c]_rt_te: Of the fi:n field is numeric, tha field lj

tn_-prekod u N 8_d the storage location is sequential fr:.the

.pre_. _d.. The intoser N .is followed by & _ or comzn_ .

ii.l_ _' _ .G]UI_ILc.tor _ _ t]_ flrJt BCD C]bArM_ter to _ IlltorM_L

D][]_a _ store BCD lnfo_tion in aecendin_, loc&tionm If the
colu_n-I control p_nch is a 2, or in deeceudlns order if the

colum_ 1 control punch is aS... (Wl_e_ 2CD information ts being

read for use as format by IOH, the control .S must be used. )

When it is .necessary to continue BCD information for morethan one

card, the following, cards must have a blank or an 8 punch (EX:)K)

in colunm I followed by the integer N, a blank or comma, and the

BCD information. Note: N n_y not exceed the. physical capacity

of one cs_rd. Succeeding cards must each contain N.

I End-of*FeLls: - When either a physical or.control punch end-of-file

Is encountered, the second parameter of the calling sequence is

eXam/ned. As noted above, if the parameter value is non-sere, the

I s_rd ]CXIT subroutine is called. If the parameter value is sere,

a + I is stored in the location designated and control is returned

to _ calling program. A +I is stored if a control card ZOF wne

I encountered; a -I is stored if a physical EOF was encountered.

I
I
I

I

I
I

I
I

I

Error Codes: - When DING finds an error, it reads in, but does not

convert the rema/n_g cards unt41 a_ end-of-record control punch

occurs in column 1. The exception is that the storage location of

eLch piece of datum is checked to determine if the location is within

the stited dimension of the variable. If not, an error print-out is

made, but DING wil! continue to store data. While bypassing the

data cards in the first instance, DING will continue to search for

errors, printing each error as it is found. The standard error

procedure print-out is produced on the peripheral output tape as:

AN ERIOR HAS BEEN FOUND AT OR NEAR

EXTERNAL FOR_ULA NO. o<, INTERI4AL FORMULA NO. _ ,OF
DING

where ,_ is the error code and _ is (100 x card count ÷ column

nun_ber)l 0 where the error occurred. The error codes are:

Js_uAry 1961 FSP_61-17. S
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I I I

Code 1
3
5
7

8
9

copra(; n_rox_TxoN_

le

I
, ,li _ _] "i ' " - " I

I
Column 1 oo_t_t_ not acaept_ble
Variable location exceeds d£tx:wned.on EE

Error in _ta ¢haractor I

Integer is too large

Variable not given in table

Tape fail_e I

The eontrol punch zero must be on every octal instruction

card. In. the octal fields, blanks are equivalent to _ro.

2. : A data field is terminated by either a blank or a comma, Any
number of blanks may separate the data fields.

I
I

I
I

3. .absolute storage locations, if specified, must be designated in
the first field of the card.

An end-of-file error exit may be obtained by either an end-of,.file

control card or if there is an attempt to read more data cards
when no more are available.

e

e ._ control character including a BCD 5 control and an EOI_ control:

is an illegal character unacceptable to the peripheral card reader.

If it is desired to load numeric data after loading BCD data, it

is necessary to use a control punch "3'* or "4" in column l to
cause DI]_G to revert to numeric conversion.

. Two commas in succession will cause a dummy number of all

l's to be stored.

6.
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ADDENDUM

• I I I' i i

_ENTIFICATION:

•Title: T._25LE _Statement

Source LanEuage :
Amalic&t!on: 7090 FORTRAN
Author: Dorothea S. Clarke

i

Unit: Computer Techniques Development

Installation: General Electric - Evendale

Da_: _--u_ 1961
I

TABLE GENERAL FORM

TABLE V 1 (Vl, v2, v 3 .... vi) , . ..

Vi(v 1, v 2, Vy.. vi) , ...........

-- Vj(v i, v z ...... vi) where

V is the name of a variable.

_,aV_;e.are the values contained

EXAMPLES

TABLE AESOP(3. 79, -2. 3,

.... ), IOST(3, 2, 6... ),

DATA(7, $(A, N, CEPH,...

• ee • )

The TABLE statement provides the tool for the programmer

to compile tables of fixed information into a FORTRAN program or
subprogram. The variable must have been defined in a DIMENSION

statement. The value list must be in the usual "c olumnwise" order.

At least seven types of conversion are acceptable:

1. Integers

Z, Floating point numbers

3. BCD information

4. Octal information

5. Locations of variables

6. Table generation

7. = symbol

Conversion is determined by the format of the field, as follows:

I. Integers simply designate integer conversion.

June 1961
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2.

3.

.

.

.

June 1961

'j

IT_L..̧ _[
| Statement

i i i :

Floating point is designated by the acceptable FORT I_ N

and DIP forms with the exception that only the DIp form

containing a decimal point or exponent•is recognized.

For example, the following forms are all acceptable:

4096. +4. 096E3

+4096. 0 4. 096E+3

4.096/3 +4. 096+3

4. 096/+3 40960/-1

BCD information is designated by preceding the information

by nil, where n is the number of characters, including

blanks, contained by the field. A single field may fill

multiple words, that is, n_ 6; however, n _ 6 causes the

n characters to be stored, left justified and followed by

blanks in a full word of storage.

As an example, information preceded by 8H indicates that

the first 6 characters are stored in the first storage location,

and the remaining Z characters followed by 4 blanks are

stored in the second storage location.

The character O followed by 1 to 1Z octal digits,_ sign

optional, designates octal conversion; for example,

037

0377777777777

O- 3777

0+700000

A field which contains only a variable name stores the

initial address of the variable.

The symbol $ preceding a field enclosed in parentheses

indicates that a table is to be generated from the enclosed

list. Example: , $(A, B, G, D),

Each variable name causes three words to be generated

in a table. The first word is the BCD variable name.

The second word is the location, and the third word

contains the dimensions of the variable. Each 1Z bits of

the third word contains a dimension, for example,

AFM61-10. Z
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0 0200 0000.0000 defines i = 128

O 0200 0037 0000 defines i = 128, j=3t

0 0200 0037 0123 defines i = 128, j=3l-,_.k_8B

This table may be generated within a defined table by

embedding the $(LIST) as a field among other fields.

following illustration

The

TABLE DATA (7, 3, $(A, B, C, D, E, F, G))

produces a 23 word table located at DATA.

o The conversion of a field which contains n=, where

n is an integer, depends upon the preceding field. If the

preceding field is numeric, n words of zero are generated
in the table, If the field is BCD, n words of blanks are

generated. If n is not specified, a value of one is assumed.

If the tabular information is larger than can be contained on the

initial plus 9 continuation cards, TABLE continuation cards may be
used, that is, another TABLE statement occurs in the form

TABLE n ( ....... )

where n is a digit. The only sequence check is that n_ previous n.

A single TABLE statement may be used to define several small
tables.

TABLE statements may appear any place in the source program

after the DIIVIENSION statements defining any variables named

ina $(LIST).

The present loader does not permit the use of tables located in
COMMON.

.Tune 1961 AFM61-10. 3
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APPENDIX D

THE BLAESS METHOD FOR NUMERICAL INTEGRATION

OF ORDINARY DIFFERENTIAL EQUATIONS
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The Blaess Method for Numerical Integration of Ordinary Differential Equations

The purpose for this appendix is to put on record the derivation of equations

used in the Blaess Method for integrating an ordinary, llnear or non-linear,

differential equation of the second order. This method is most useful for homo-

geneous equations, i.e., when the second derivative depends on the dependent

variable, and only indirectly on the independent variable. The attractive

feature of this method as compared with other more common methods, such as Adams-

Moulton or Runge-Kutta, is that the integration and correction is carried out in

self-contained sequences of fzve steps. No special techniques are required for

starting the integration. The user has complete freedom to vary the interval of

integration for successive sequences of steps.

This method came to the author's attention through Reference 8 and a lecture

given to the General Electric Advanced Courses. Reference 8 did not give a

derivation, and there seem to be some algebraic errors in the results. Conse-

quently, a new derivation has been prepared and is presented here for record.

We are interested in a dlfferential equation of the form,

subject to initial conditions:

at

(z)

(2)

Formal integration over a step may be carried out if we assume that d2y/dx 2

does not change during the interval: x o x Xo+ x

(3)
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I

Then (d2y/dX2)l can be calculated using (i) and the formal integration I

process repeated. I

The principle behind the Blaess Method is to carry out five steps according

to (3), and then examine the results for error and determine a correction. The I

procedure is to look for representative values of d3y/dx 3 and d4y/dx 4 over the

entire range x to x + 5/_x, which can be used to improve the integration,

o u 2 2 I
Approximate values may be found if the variation of d y/dx with x is neglected

in comparison with variation with respect to y. The five integration steps carried

out so far provide a body of data on the variation of d2y/dx 2 with y. It is I

supposed that the best values of d3y/dx 3 and d4y/dx 4 would be calculated from the

2 2
differences between d y/dx at the corrected values of y corresponding to x + 4/_x I

2 2 _ x 2
and x ° + 2/kx and the value (d y/dx )o" In the neighborhood of x ° + 4L_x, d y/d

is varying with y at approximately the rate I

(4)

In the neighborhood of x + 2/kx the corresponding rate is I

_-- _# and will be small I

We are, of course, assuming here that the corrections to Y2 Y4

compared to (Y3- Yl ) and (Y5- Y3 )" I

Now, the corrected value of Y2 is to be given by its Taylor Series expansion, I

using 2/kx, 2 _ ._. _

The current estimate for yg. is_ _ # _ _ _ _I] m

+-=/#) +..,.. )-7 I
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I
I 2 2The corrected value of (d y/dx )_ is now,

vl

I The notation will be simplified by using

<=,II• .,, _/_ o
• v" -fz-><',-,),
II

I • ,q /d_'_ .

I | ! l! t!

with similar ti Yl' Y2' Y3' ..... ' Yl' Y2' ..... ' Yl' Y2, .....

designating values after intervals _x, 2Ax, etc.

I
Then (7) becomes • J!

I :,o:_,,+L.-_(_,,__,,;_,<)_+_,._>,,_+,,,. ,,,7.#,-_,

I

I

I
I

I
I

ll

Y2c may also be expressed _n terms of a Taylor's Series based on conditions

at O.

_,': ,_.__,,(=,,.j+_."_"_" 2 (10)

Equating (9) and (10), and collecting terms, m

(ii)

l similar expression is based.on studying y.
#_ # _tc m

, ,, , ,_,..,,__,,...,_,,7_'-,_,"
=t+-_,+('_'<)f;#, =-,,, g =_,,j _,.._.,
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I

Equations (Ii) and (12) are the basic equations of the Blaess Method. If I

the solution is being carried out by computer, it is profitable to use these

formulas as is, as may be seen from the numerical comparisons given on the I

last page. If the calculations are being done by hand or desk calculator however,

_t may be preferable to choose x small enough so that the terms involving I
,, A 2 ,, ,, A z

_Y3- Y_3- Yl _ax andS5- Y_5- Y3 _x may be neglected. Then

- _ ) (la)

J"/_,> <J_ IZ" = " -" _- "_

Equations (13) can give quite good results. They may be interpreted in the form I
i

of corrections to Y5 and Y5:

I# 'Ixl (14 ) I

I

I
Equations (14) have been obtained by comparing the Taylor's Series values for

! i! i! i! i!

Y5 and Y5, with the actual calculation, and replacing Yl by(Y2 + Yo )/2 and Y3

by (Y4 + Y2 )/2"

I

I

I

I

I

I
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